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Abstract

Do social networks matter for the adoption of new political communication technologies?
We collect complete social network data for sixteen Ugandan villages where an innovative re-
porting mobile platform was recently introduced, and show robust evidence of peer effects on
technology adoption. However, peer effects were not observed in all networks. We develop a
formal model showing that while peer effects facilitate adoption of technologies with minimal
externalities (like agricultural practices), it can be more difficult for innovations with significant
positive externalities to spread through a network. Early adopters might exaggerate benefits,
leading others to discount information about the technology’s value. Thus, peer effects are
likely to emerge only where informal institutions support truthful communication. We show
that the observable implications of our model are borne out in the data. These impediments to
social diffusion might help explain the slow and varied uptake of new political communication
technologies around the world.

∗We gratefully acknowledge the support and cooperation of members of the Arua district local government, as
well as RTI, GAPP, UNICEF Uganda, USAID/Uganda, and the USAID Center of Excellence on Democracy, Human
Rights, and Governance, without whom this study would not have been possible. We thank Innovations for Poverty
Action Uganda for excellent research assistance and data collection. Jon Helfers, Maximillian Seunik, Areum Han
and Zachary Tausanovich provided valuable research assistance at various stages of the project. We received helpful
feedback from USAID Uganda, DFID Uganda, GAPP, and district officials at a stakeholder meeting in Arua in late
2016, as well as from participants at seminars in Brigham Young University, the University of Pennsylvania and
Princeton University. We are thankful to SEED at the Stanford GSB for financial support. Finally, we are grateful to
the thousands of Arua residents who so generously shared their time with us over multiple periods of data collection.
We hope our findings can serve to make programs such as U-Bridge successful in improving communication and
ultimately service delivery in Arua and beyond.
†Department of Political Science, Princeton University. ferrali@princeton.edu
‡Department of Political Science, University of Pennsylvania & EGAP. ggros@sas.upenn.edu
§Division of Social Science, New York University Abu Dhabi. mplatas@nyu.edu
¶Department of Political Science, Stanford University. jrodden@stanford.edu

mailto:ferrali@princeton.edu
http://egap.org/
mailto:ggros@sas.upenn.edu
mailto:mplatas@nyu.edu
mailto:jrodden@stanford.edu


1 Introduction

Novel political communication technologies (PCTs) are facilitating new forms of political partic-

ipation around the world. From New York City’s NYC311 platform1 to community monitoring

text-messaging systems in Africa (Grossman, Platas and Rodden, 2017), new technologies are al-

lowing for more frequent and cheaper forms of participation than traditional means of political

engagement. These technologies have the potential to transform the relationship between citizens

and their governments, offering opportunities to address some of the most intractable governance

challenges. The potential benefits of PCTs are especially large when it comes to acute service

delivery failures in the developing world. New programs allow citizens to report problems, such as

teacher absenteeism, in a way that is immediate, inexpensive, and potentially anonymous (Peixoto

and Sifry, 2017). However, recent studies have demonstrated that adoption of these promising new

technologies has been variable from one context to another, and relatively disappointing overall in

the developing world (Grossman, Humphreys and Sacramone-Lutz, 2016). These new technologies

will not affect governance, or will only benefit a narrow group of users, if they are not broadly

adopted. This paper asks a question of growing importance: what explains variation in the uptake

of new political communication technologies?

We examine the role social factors, specifically peer effects, play in influencing the adoption of

a new community reporting PCT platform in Uganda. Our starting point is past work on social

diffusion, which explores how and why social learning from peers facilitates the adoption of new

technologies (Golub and Sadler, 2017). In short, under conditions of uncertainty over the costs and

benefits of the usage of new technologies, information is crucial to adoption decisions. Network ties

are generally consequential because friends, family, neighbors and colleagues are often viewed as

convenient and trustworthy sources of information.

Existing studies focus on the adoption of technologies that increase, for example, agriculture

productivity (Bandiera and Rasul, 2006; Conley and Udry, 2010; Foster and Rosenzweig, 1995),

health status (Kremer and Miguel, 2007; Dupas, 2014; Oster and Thornton, 2012), or access to

financial services (Banerjee et al., 2013). Unlike past work, we explore the impact of social ties

on the adoption of a (political communication) technological innovation that involves substantial
1http://www1.nyc.gov/311/index.page

1

http://www1.nyc.gov/311/index.page


positive externalities, and is thus more likely to involve strategic considerations. Existing theoretical

and empirical studies are generally silent about whether and how peer effects might work in the

presence of such externalities. An important concern is that diffusion of adoption of PCTs via peer

effects might be undermined because of these externalities.

Exploring the effects of peers on political behavior is notoriously difficult (Jackson and Yariv,

2010). First, the set of neighbors that influence an individual’s political actions is hard to de-

fine (Pietryka and DeBats, 2017). Second, even when networks are well-defined, data on inter-

subject connectivity is typically unavailable to social scientists, causing them to rely heavily on

simulation in social diffusion studies (Cranmer et al., 2017). We address these challenges by col-

lecting original and complete social network data from sixteen Ugandan villages where a new po-

litical communication technology, U-Bridge, was introduced to facilitate the anonymous reporting

of service delivery problems to local government officials.

We find that, on average, peer effects influence individuals’ adoption of this PCT. A villager’s

decision to report a service delivery problem via U-Bridge is significantly affected by the adoption

choices of social ties within the community’s social network. Specifically, every additional neighbor

that uses U-Bridge increases the likelihood of adoption of an individual by about 2.7 percentage

points—a 61 percent increase relative to the base adoption rate. We demonstrate that this result

is not likely a simple reflection of homophily, and is robust to other possible inferential threats we

document below.

However, we also find considerable variation in the extent of peer effects across villages where

the new political communication technology was introduced. While there is strong evidence of peer

effects in some villages, others show little signs of such influence. Why do social networks sometimes

fail to support the adoption of a new PCT? Moving from the individual to the network (i.e., village)

level, in the second part of the paper we turn to adjudicate between several alternative explanations.

We first explore and reject the possibility that the variation in the uptake of U-Bridge is due to

(a) differences in network structure (Centola, 2015), or to (b) differences in the characteristics

(personal and relational) of the initial seeders of the information that is to be diffused across the

social network (Banerjee et al., 2013; Larson, Lewis and Rodrıguez, 2017).

We then turn to explain the puzzle of widely varying peer effects by introducing a simple

formal model, demonstrating that whether or not networks support technology diffusion depends
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on the nature of the technology itself. Our model takes into account two features of PCTs. First,

as with most new technologies, there is uncertainty about the costs and benefits of adoption.

For example, “whistle-blowers” may face significant social costs if their identity is revealed, while

potential benefits – teachers showing up to class, for example – depend on the responsiveness of

public officials, which is not guaranteed in the many low-income countries (Kosack and Fung, 2014).

Second, the benefits of this particular type of technology, like many crowdsourcing applications,

are subjected to positive externalities–its effectiveness is increasing with the number of people who

use it. In other words, PCTs belong to a class of goods for which the payoffs of one agent depends

on the actions of other agents.

The model shows that while networks foster the diffusion of goods with minimal externalities,

such as many consumer goods, they may play no role for goods that have significant positive

externalities. We argue that under these conditions, early adopters of the new technology have

strong incentives to exaggerate the benefits of adoption, in order to convince others to adopt.

Recognizing this incentive, their neighbors have reason to discount information they receive from

early adopters. Not all networks overcome the challenge of truthful communication about the new

technology, without which social diffusion does not take place. Peer effects only support diffusion

of new technologies with large positive externalities in networks where truthful communication is

supported. We test the observable implications of the theory using network data, survey data and

behavioral experiments, and find evidence consistent with the model’s propositions.

Highlighting the importance of truthful communication for social learning situates our pa-

per within a nascent literature that studies strategic communication in networks (Hagenbach and

Koessler, 2010; Galeotti, Ghiglino and Squintani, 2013; Gieczewski, 2017). This literature considers

situations where agents would like others to take an action that is close to the state of the world,

but disagree on which action is optimal in a given state. Past studies focus on how these conflicts

of interest hinder truthful communication. We consider situations that are somewhat different, and

more specifically relevant for technology adoption with externalities. Namely, we consider instances

in which all agents agree on the action that needs to be taken in “high” states, where the technology

is useful, and are indifferent about the actions of other agents in low states, where the technology

is useless. We show that such situations also hinder truthful communication.

Our study also contributes to a growing body of work on political communication technolo-
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gies. Existing work has examined the efficacy of these technologies in improving service delivery

(Grossman, Platas and Rodden, 2017), accountability (Grossman, Humphreys and Sacramone-Lutz,

2016), the accuracy of granular conflict data (Van der Windt and Humphreys, 2016), and corrup-

tion (Blair, Littman and Paluck, 2017). Recent work has also investigated determinants of PCT

uptake. This work has focused on individual attributes (Grossman, Michelitch and Santamaria,

2016), neighborhood characteristics (Feigenbaum and Hall, 2016), and perceptions of government

responsiveness (Sjoberg, Mellon and Peixoto, 2017). We expand this work by focusing on the role

social networks play in adoption decisions.

Finally, we contribute to a literature exploring the effects of social networks on political be-

havior. Existing work focuses on traditional forms of political engagement (Rolfe, 2012). We

investigate instead the role of social networks in the adoption of new forms of political engagement,

where there is higher uncertainty over costs and benefits of participation and thus peer effects are

potentially even more important. Further, with a few exceptions (Eubank et al., 2017), existing

work on social networks and political behavior has relied almost exclusively on egocentric network

data–reports by survey respondents on their friends, with no linking across respondents to create

a full network (Abrams, Iversen and Soskice, 2011; Klofstad, Sokhey and McClurg, 2013). Though

improving our understanding of the role social ties play in shaping political behavior, egocentric

networks operate with incomplete network information, and are generally unable to correct for

biases arising from homophily (Sinclair, 2012; Siegel, 2011). We address these concerns by con-

structing a relatively large number of independent whole networks and by implementing a set of

robustness checks designed to minimize bias stemming from homophily. By situating our study in

a low-income country, we also move beyond a narrow focus on peer effects on political behavior in

a small number of industrial democracies.2

2 Context

The community reporting platform we study, U-Bridge, was implemented in a collaboration between

the local government in Arua, a relatively poor district located in North-Western Uganda, and the

Governance, Accountability, Participation, and Performance (GAPP) project, funded by the United
2See also Larson and Lewis (2017) that undertake a full network census in two Ugandan villages to study variation

in the spread of information (rumors) as a function of ethnic diversity.
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States Agency for International Development (USAID). The demand for mobile-based political

communication technologies such as U-Bridge stems from their potential for tackling persistent

public service problems (Jahan et al., 2015), such as alarmingly high levels of absenteeism among

government healthcare workers and teachers (Chaudhury et al., 2006). U-Bridge is one of many

recent PCTs that are based on the simple idea that participatory grassroots programs need not

circumvent government actors (Buntaine, Nielson and Skaggs, 2017). Instead, communities can be

harnessed to better inform government officials of service delivery deficiencies (Grossman, Platas

and Rodden, 2017).

Through U-Bridge, anyone can contact district officials by sending a text-message to a short-

code number (8500). Messages sent through the U-Bridge platform are both free and anonymous,

lowering the monetary and social costs for bottom-up reporting about service delivery problems.

The back-end is an open-source software package that runs on a variety of mobile devices, including

tablets and smartphones. The program provided district officials in both technical and political

positions with 3G tablets and free Internet access that enabled them to access and respond to

incoming messages.

U-Bridge was implemented using a field experimental research design, encouraging usage in

131 randomly selected villages across Arua district organized around 24 clusters.3 Residents in

treatment villages were invited to attend periodic community meetings, implemented and orga-

nized by GAPP. In these meetings, attendees received information about national service delivery

standards, and were informed about ways to communicate with local officials. In addition, public

officials provided attendees with an overview of government efforts in service delivery, especially in

response to previous text messages. The first round of community meetings was held by GAPP in

the last quarter of 2014 as part of the launch of the U-Bridge service. Subsequent meetings were

held quarterly.

Usage of the new communication technology was further facilitated by registering a phone

number, which involved texting “Join” to 8500, after which the sender would be asked to share

basic demographic information, such as gender, age, and village of residence. Registration took
3We constructed 48 village-clusters in Arua district, defined as the group of nearby villages that are serviced by the

same public health center. Half of Arua’s 48 clusters were randomly assigned to treatment (U-Bridge encouragement)
and half to control. Villages within a cluster were all assigned to the same treatment. We study the effects of
encouraging the usage of the new platform on service delivery outcomes in a companion paper.
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place at community inception meetings, in a door-to-door registration drive, and by individuals

who heard about the service by word of mouth. Registration did not compromise the anonymity of

incoming text-messages, which are assigned a unique case ID such that phone numbers are never

displayed on the U-Bridge dashboard.

Figure 1 shows the cumulative number of relevant and actionable incoming-messages between

August 2014 and November 2015, demonstrating a relatively strong demand for a platform like

U-Bridge, consistent with findings reported by Grossman, Humphreys and Sacramone-Lutz (2014).

Nevertheless, it is evident that the vast majority of villagers have not used the platform, even

as the quality of social services in Arua district is low compared to national benchmarks. Since

the effectiveness of PCT platforms hinges critically on grassroots participation, and since platform

adoption reflects whose voices (i.e., interests and priorities) are heard, it is imperative to further

explore the determinants of differential uptake.
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Figure 1: Message intensity over time. The monthly (bottom-panel) and cumulative (top-
panel) number of relevant and actionable messages over time. Lines are derived from locally
weighted regression (lowess).
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3 Research design

We first discuss the process by which we selected villages to be included in the network survey,

followed by a short description of how we constructed the social network data.

Village Selection

We collected complete network data in 16 villages—the number of villages determined by budget

constraints. Half of the villages had a relatively high level of U-Bridge adoption given village

characteristics, and half of which had low levels of adoption. In Table A.1 we report a set of OLS

regressions in which two measures of adoption—the number of unique message senders and the

number of messages sent via U-Bridge (normalized by village adult population)—are regressed on

village predictors, derived from the 2014 census and from information assembled by the U-Bridge

program. Using the regression model shown in column 6, we generate predicted values for the

dependent variable (ŷ). We then calculated the difference between the predicted value and the

actual value of the dependent variable; i.e., ε̂ = ŷ− y. Using these residuals, we selected the 8

highest performing (largest positive ε̂) and the 8 lowest performing villages (largest negative ε̂).

Figure A.1 maps the villages selected for data collection.

This design selects on the dependent variable, which is advantageous for a research agenda in

its early stages. We construct a sample whose outcome is least explained by standard models of

political participation, and thus more likely to be explained by potential network factors. Since

half of our villages are high-performers and half are low-performers, our design also increases the

likelihood of finding heterogeneous effects, allowing us to say more about when and why networks

matter. Our design was also informed by the study’s sample size, which was limited by the high

cost of collecting complete real-world network data.

Data Collection

Data collection took place in April and May, 2016. Prior to enumeration, research team represen-

tatives met with the village chairperson to receive permission to undertake our activities and to

conduct a listing exercise of all village households. On enumeration day, a short survey was con-

ducted with every household in the village in which at least one adult was present, and with every
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available individual present in the household. The survey included a set of questions about basic

demographics, respondents’ social ties, and U-Bridge knowledge and usage. In total, we interviewed

3,184 individuals, covering about 75 percent of the adults residing in the surveyed villages.4

Network construction

We measured individuals’ social networks using a standard name generator (Kolaczyk, 2009). We

asked respondents to report four kinds of relationships in their village: (1) family ties, (2) friendship

ties, (3) lenders: whom they would go to if they had to borrow money, and (4) problem solvers:

whom they would go to in order to solve a problem regarding public services in the village. For

each kind of relationship, respondents were asked to name up to five individuals. A common

problem with network surveys is missing data. Since we were unable to interview every individual

in the village, there are villagers for whom we only observe a fraction of their network: they were

mentioned as ties by other respondents, but not interviewed in-person. About 30% of named

individuals fall in this category. Following standard practice (e.g. Larson and Lewis, 2017), we

exclude those nodes from the analysis.

Using survey responses, we first construct four different “undirected” village networks for the

four different types of ties, by collapsing directed ties into undirected ones.5 We further construct

the union of those networks, by defining a tie between i and j if there is at least one tie between

them in any of the above four networks. Respondents who were knowledgeable about the U-Bridge

platform were further asked to name the individuals from whom they heard about the platform.

This allows tracking the diffusion process of knowledge about the new political communication

system. Figure 2 provides a graphical representation of the union network of two of the 16 villages:

one high uptake (village P), and one low uptake (village G).
4In the Supplementary Information (SI), Table 1 we report the number of individuals we surveyed in each village,

the number of individuals mentioned by at least one person (henceforth, “alters”), and the number of adults living
in each village, according to 2014 census data. This information allows calculating the number of missing nodes.

5In other words, we say that i is friends with j if i mentioned j as a friend or j mentioned i as a friend. Our
results are robust to treating constructing the family and friendship networks using reciprocated ties; that is, by
saying that i is friends with j if i mentioned j as a friend and j mentioned i as a friend. All network concepts are
defined informally in the main text. Formal definitions are available in the SI.
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Figure 2: Graphical representation of the union network of two villages in the study area.

Variable description

Our core outcome measure is the adoption of U-Bridge, the new political communication platform.

Adopt is a self-reported, binary variable that equals 1 if the respondent has used the platform at

least once in the past 12 months. Similarly, hear is an indicator that gets the value of 1 if the

respondent has heard about the U-Bridge service. By definition, U-Bridge adopters have a positive

value for hear, but not vice versa. For those reporting that they have contacted Arua district local

government via U-Bridge (i.e., “adopters”) we also measure satisfaction: a rescaled binary variable

that equals 1 if the respondent is at least somewhat satisfied with the platform (derived from a

five-point Likert scale).

Our key explanatory variables are network characteristics that support diffusion. The empirical

literature on social diffusion is large, and for tractability, we focus on two classes of diffusion models:

(a) fractional threshold model, where an individual adopts a technological innovation if more than

some share of her neighbors have adopted it (e.g., Acemoglu, Ozdaglar and Yildiz, 2011), and (b)

absolute threshold model, where an individual adopts if more than some number of her neighbors

have adopted (e.g., Centola and Macy, 2007). When examining absolute contagion processes, our

key independent variable, # adopting neighbors counts, for each individual i, the number of social

ties (‘neighbors’) in the union network that report using U-Bridge to contact district officials in
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the past 12 months. In some specifications, we also consider the variable # hearing neighbors that

counts instead the number neighbors that have heard about U-Bridge. We also construct equivalent

count measures for the four network types that make up the union network (‘friends’, ‘family’,

‘lenders’ and ‘problem solvers’). When examining fractional threshold models, these variables are

measured as the share of hearing / adopting neighbors among i’s social ties.

While network ties account for social influence, we also account for spatial influence by using

GIS information we collected on the location of each household. Specifically, the variable geography

is a spatial lag that counts the number adopters within the village besides node i, and assigns less

weight to those who reside farther away from that node.6

We collect a set of individual-level control variables that likely affect the usage of U-Bridge.

These include the continuous measure of age; a female indicator variable; secondary education,

which is a binary variable that equals 1 if the respondent attained at least secondary education;

and income, a subjective wealth measure ranging from 1 (low) to 5 (high). The variable use

phone is a binary variable that equals 1 if the respondent has used a mobile phone in the past 12

months to make a call or send a text message. Leader is a binary variable that equals 1 if the

respondent occupies one of several formal public leadership positions within the village. Political

participation is a summary index aggregating across recent political actions.7 Pro-sociality is a

behavioral proxy-measure of care for the community; it is measured as the level of contribution

(i.e., number of monetary units) in a standard dictator game. Finally, attend meeting indicates

whether the respondent attended any of GAPP’s community meetings, in which the U-Bridge

platform has been introduced or discussed.8

At the village level, we report network measures associated with social diffusion process—such

as density, mean path length and clustering—in addition to several other standard predictors of

political participation derived from the Ugandan 2014 census. Table 1 shows selected descriptive

statistics for our 16 villages, split between high- and low-uptake.
6Let yi = 1 if i adopted, and yi = 0 otherwise. Let dij the distance between i and j. The spatial influence

(geography) is then calculated as geoi =
∑

j 6=i
yj

logdij
.

7We consider attending a village meeting, contributing money to a village project or a village member, contributing
labor to a village project, reporting a problem to a village leader, and reporting a problem to the local government,
in the past 12 months. The summary index is constructed following the method proposed by Anderson (2008), which
gives more weight to more separating components of the index.

8All villagers attending GAPP meetings have heard of U-Bridge; thus we use this variable only when modeling
adoption conditional on hearing about the platform.
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A. Individuals
Variable Sample High uptake Low uptake ∆ min max

Outcome % adopters 0.04 0.07 0.02 0.05∗∗∗ 0.00 1.00
% heard 0.31 0.38 0.23 0.14∗∗∗ 0.00 1.00
% satisfied 0.39 0.44 0.22 0.22∗∗ 0.00 1.00

Individual age 37.39 37.55 37.22 0.33 18.00 101.00
% females 0.58 0.56 0.59 -0.03∗∗ 0.00 1.00
income 2.55 2.64 2.46 0.19∗ 1.00 5.00
secondary education 0.23 0.28 0.18 0.09∗∗ 0.00 1.00
% use phone 0.62 0.66 0.58 0.08∗ 0.00 1.00
% leaders 0.14 0.16 0.12 0.04∗∗ 0.00 1.00
political participation index -0.00 0.06 -0.06 0.12∗∗∗ -0.88 1.49
% attend meeting 0.08 0.11 0.05 0.06∗∗∗ 0.00 1.00
pro-sociality 0.20 0.20 0.20 0.01 0.00 1.00

Network degree 16.07 16.77 15.36 1.42 1.00 227.00
betweenness 143.86 150.79 136.91 13.89 0.00 16385.53
clustering coefficient 0.39 0.38 0.40 -0.02 0.00 1.00
N 3184 1595 1589 6

B. Villages
Variable Sample High uptake Low uptake ∆ min max

Network density 0.10 0.12 0.08 0.04 0.05 0.40
path length 2.12 2.08 2.16 -0.08 1.60 2.33
global clustering 0.25 0.27 0.24 0.03 0.17 0.55

Village adult population 269.38 274.50 264.25 10.25 32.00 429.00
ethnic fractionalization 0.04 0.07 0.02 0.05 0.00 0.41
% employed 0.86 0.84 0.89 -0.05 0.68 1.00
% non-agriculture 0.22 0.25 0.19 0.06 0.00 0.57
poverty score -0.07 -0.05 -0.09 0.03 -0.48 0.47
N 16 8 8 0

Table 1: Descriptive statistics. The table reports mean values for the full-sample, as well as for
low- and high-uptake villages. Network characteristics are calculated from the union network. In
panel A, difference in means are tested using a t-test, with standard errors clustered at the village
level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

We find that villagers in high-uptake villages had somewhat higher socioeconomic status com-

pared to individuals in low-uptake villages: they are slightly richer, more educated, more likely to

use a phone, more likely to hold leadership positions, and more likely to attend GAPP meetings

introducing U-Bridge. By contrast, small differences in individual-level networks characteristics –

betweenness and degree centrality as well as clustering coefficient – fall below conventional signif-

icance levels. Similarly, high and low-uptake villages do not seem to differ in terms of network

structure or community-level characteristics as culled from the 2014 census, including mean assets-

based poverty score, share employed, ethnic diversity, distance to Arua town, and population size.

Altogether, Table 1 suggests that variation in technology adoption at the individual level may

be better explained by differences in villagers’ characteristics and processes of social influence

(i.e., peer effects) than by differences in village characteristics commonly used in political economy
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studies. Our empirical strategy is designed to estimate the relative importance of these plausible

determinants of the adoption of political communication technologies.

Estimation

We estimate peer effects using a standard Spatial Auto-Regressive (SAR) model, where the proba-

bility of adoption depends on some function of the adoption of one’s neighbors. Consider individual

i on network g, and let Ni(g) be the set of her neighbors on g. Let yi be i’s outcome, equal to 1 if

i adopts, and 0 otherwise, yNi(g) be the vector of outcomes of her neighbors, xi a vector of control

variables, and εig an error term. We estimate the following linear probability SAR model:

yig = β0 +f(yNi(g))β1 +xTi β2 + εig

In particular, we examine both absolute, and fractional threshold models with and without

controls. In the first case, f(yNi(g)) =
∑
j∈Ni(g) yj is the number of adopting neighbors. In the

second case, f(yNi(g)) = 1
|Ni(g)|

∑
j∈Ni(g) yj is the percentage of adopting neighbors.9

We use the most conservative approach: we account for village-level heterogeneity by adding

village indicators, and use heteroskedastic robust standard errors. This is a conservative approach

as we lumped into a village-level effect all factors that could not be explained by any other channel.

4 Results: Peer effects

In this section, we present our main results with respect to the role of peer effects on the adoption of

U-Bridge, followed by a set of robustness checks, including an instrumental variable approach. We

find that, whether using the number of adopting neighbors (absolute threshold, Table 2, columns

1-2), or the share of adopting neighbors (fractional threshold, Table 2, columns 4-5), adoption

of the U-Bridge platform increases with the adoption decisions of one’s social ties. Specifically,

according to the baseline absolute threshold model (column 2), the likelihood of using U-Bridge

increases by 2.7 percentage points for every adopting neighbor. Moving to the baseline ‘fractional’

threshold (column 5), we note that 32% of respondents have no ties to an adopter, and among

those connected to at least one adopting neighbor, the mean share of adopting peers is 15%.
9Our results are robust to using a logistic regression instead.
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Since the model fit for a absolute threshold contagion process (column 2) slightly outperforms

modeling fractional threshold contagion (column 5)—using R2 or the Akaike Information Criteria

when fitting a logistic regression—we use the absolute threshold model when calculating marginal

effects, reported below (Figure 3).

Robustness Checks

We report a host of robustness checks for our core finding on peer effects, reported in Table 2. We

first test whether our results are sensitive to dropping village A, which has a smaller number of

respondents (30) than other villages (mean number of respondents is 210). Results, reported in the

SI, Table 5, show again a strong positive relationship between the number (or share) of adopting

neighbors and one’s adoption choice.

We next probe into mediating behavior: one can only adopt the innovation if she has heard

about it. Building on recent work by Larson, Lewis and Rodrıguez (2017), we show that our results

are robust to running a two-stage (logistic) selection model in which we model separately the social

process of hearing about an innovation and that of adopting the new technology conditional on

hearing about it. We find that peers affect both stages of the diffusion process (SI, Table 6).

Figure 3 shows that the (total) average marginal effect of an adopting peer estimated using our

two-stage model is comparable in magnitude to our baseline, reduced-form specification (Table 2,

column 2) reestimated using a logistic regression.10

10The controls in Table 6 in the SI also reveal an important insight: if women are less likely to be U-Bridge users,
this is only because they are less likely to hear about the existence of the program; they are not less likely to adopt,
conditional on hearing. This finding on a traditionally politically marginalized category of individuals suggests that
the role of social ties in the process of hearing about a new technology may be different than their role in the adoption
phase (conditional on hearing).

13



Dependent variable: adopt
Parsimonious Baseline Decomposition Parsimonious Baseline Decomposition

(1) (2) (3) (4) (5) (6)
# adopting neighbors 0.035∗∗∗ 0.027∗∗∗ 0.019∗∗∗

(0.005) (0.005) (0.006)
% adopting neighbors 0.325∗∗∗ 0.218∗∗∗ 0.157∗∗∗

(0.052) (0.048) (0.057)
degree 0.002∗∗∗ 0.001∗ 0.0002 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
# neighbors who told me 0.062∗∗∗

(0.012)
% neighbors who told me 0.871∗∗∗

(0.198)
1+ satisfied neighbors 0.012 0.024∗∗

(0.012) (0.011)
Constant 0.061 0.125∗ 0.124∗ 0.052 0.109 0.093

(0.073) (0.076) (0.075) (0.073) (0.075) (0.075)
Controls _ X X _ X X
Observations 3,184 3,019 3,019 3,184 3,019 3,019
R2 0.139 0.247 0.273 0.116 0.233 0.251

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Adoption of U-Bridge. OLS estimates with village-level fixed effects. Heteroskedastic standard errors in parentheses. Absolute threshold
models (models 1-3) have weakly better fit than fractional threshold models (models 4-6). 1+ satisfied neighbors is an indicator variable that equals
1 if at least one neighbor is satisfied. Model 2 is our preferred specification.
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Figure 3: Selection model with hearing. Average marginal effect (AME) of an adopting neighbor on
hearing (first stage) and of adopting conditional on hearing (second stage). The total effect of the selection
model matches the estimate from a reduced form logistic regression. Bars represent heteroskedastic 95
percent confidence intervals.

Causally identifying peer effects

As with all social diffusion studies, the key empirical challenge we face is identifying peer effects;

that is, the impact of an exogenous shock to the outcome of an agent on the outcome of one of her

neighbors. We face two main endogeneity problems that we address with a variety of robustness

checks. First, the initial encouragements to adopt the technology might be endogenous. Even in

the absence of social learning and influence, two connected individuals may adopt similar behavior

as a result of similar characteristics, due to homophily (Jackson, 2008), or because they are subject

to related unobservable shocks (Conley and Udry, 2010). Second, exposure to peer influence is

endogenous to one’s network position (Aronow and Samii, n.d.). Indeed, individuals with more

central network positions are more likely to be exposed to peer influence, since they have more

neighbors, or neighbors who are themselves more central. In the limit, agents with no neighbors

cannot be exposed to any influence.

To address the issue of endogenous encouragements, we use a generalization of An (2016) in-

strumental variable (IV) approach. To instrument for j’s influence on i, the approach leverages

covariates that directly affect j’s outcome, and only affect i through j’s influence. Our instrument

is the distance from one’s household to the location of the meeting introducing U-Bridge. Since

meeting location was chosen as if randomly, being closer to the meeting represents an exogenous en-

couragement to adopt the technology. Indeed, the shorter the distance to the venue, the more likely

a villager is to adopt U-Bridge, simply by increasing the likelihood that she attends the meeting

and learns about the new technology. For the instrument to be valid, the exclusion restriction must
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be satisfied; i.e., we must assume that j’s distance to the location of the meeting does not affect i’s

adoption via alternative channels than j’s influence on i. This would be the case if contacts tended

to cluster around locations that were more or less exposed to the meeting. Encouragingly, we find

little (-.04) correlation between physical distance and having a social tie.11 The results of our IV

models, reported in SI, Table 7, confirms our basic adoption model.

We address the issue of endogenous exposure to peer influence owing to one’s network position

by comparing individuals who share similar network positions. While our main specification already

did so by controlling for one’s degree, we push such comparisons further by controlling for degree

more flexibly, and for other attributes of network position. Our results are robust to controlling

for degree non-parametrically with generalized additive modeling, as well as using a large number

(10) of degree strata (SI, Table 10).

We further check the robustness of our core findings to endogenous exposure to peer influence

by controlling for a host of other network centrality scores (SI, Table 11). Following recent contri-

butions (Banerjee et al., 2013; Alatas et al., 2016), for each node i, we compute betweenness (the

extent to which a node in the network needs to go through node i in order to reach some other

network member), closeness (the mean distance between node i and any other node), eigenvector

centrality (a measure that gives more weight to high degree nodes connected to other high degree

nodes), Bonacich centrality (a measure that gives more weight to high degree nodes connected to

low degree nodes), and clustering (the share of i’s friends that are also friends with each other).

We bin the continuous centrality measures into three equally sized bins (low, medium and high-

centrality), and run separate model for each centrality measure. While confirming our main result,

this robustness check also yields an insight that echoes previous findings from contagion studies:

individuals in highly clustered neighborhoods are less likely to adopt (Centola and Macy, 2007).12

Finally, we use matching to address both problems simultaneously. Building on Aral, Muchnik

and Sundararajan (2009) who show that matching allows eliminating most of the bias common in

observational studies of peer effects, we match villagers that share similar individual and network
11We conduct additional checks for potential violations of the exclusion restriction by conducting several placebo

tests (SI, Table 9). As expected, mean peer distance to the meeting location positively correlates with adoption. It
does not correlate with other theoretically meaningful predictors of adoption, such as political participation, leadership
status, or phone ownership.

12This is because nodes with lower clustering have ties to a more diverse set of contacts, and potentially exposed
to more sources of contagion.
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characteristics. Our matched sample alleviates the problem of endogenous encouragements to

adopt the technology by comparing observations that are equally likely to be exposed to treatment,

based on observable characteristics. We construct our matched sample using political participation,

phone use, secondary education, and meeting attendance (individual-level covariates), as well as

degree and eigenvector centrality (network covariates). Using network covariates alleviates the

concern of endogenous exposure to treatment owing to network positions by explicitly matching

on selected network covariates. Since centrality scores tend to be highly correlated, matching on

those two network covariates constructs treatment and control groups that are also more likely to

be comparable with respect to other centrality scores. We compared three matching procedures:

nearest neighbor, coarsened exact, and full matching. We chose the latter matching because it

achieved the highest distance reduction. We then estimated our main specification on the matched

sample. Table 12 in the SI shows that our main result on peer effects is robust to such matching

estimates.

5 Village-level variation in peer effects

Thus far, we have focused on the adoption choices of individuals pooling data from our sixteen

villages. However, Table 2 above and Figure A.2 in the appendix suggest that there is likely

important heterogeneity across villages with respect to the size (and significance) of peer effects.

Exploring this more systematically, we reestimate our preferred regression model (Table 2, column

2) separately for each community. As shown in Figure 4, in about half of the villages in our sample,

individuals’ choice of U-Bridge adoption is not positively correlated with those of network peers.

This finding suggests that the role that networks play in social diffusion processes is more nuanced

than previously assumed.

What explains variation in the magnitude of peer effects across villages? Why are peer effects

not universal in the adoption of a new PCT? To answer this question, one approach is to compare

villages with large peer effects to villages with small peer effects. We will compare instead high-

and low-uptake villages for two reasons. First, our estimates of peer effects come with uncertainty,

which makes the makeup of high- and low-peer-effect groups uncertain. Second, figure 4 shows that

save for one pair of villages (M and F), high-peer effect villages are also high-uptake villages.
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Figure 4: Average marginal effect of one adopting neighbor on adoption by village. Estimates
from our main specification when run separately for each village; sample sizes in parenthesis. High uptake
villages have large, generally significant peer effects. Low uptake villages have small, statistically insignificant
peer effects. Village A is omitted because its sample size is too small. Bars represent heteroskedastic 90 and
95 percent confidence intervals.

Past work points toward two possible network-level explanations for which we find little support

in our data. First, it might be that some networks do not facilitate processes of social diffusion due

to “inadequate” structure. For example, Centola (2015) argues that social diffusion processes are

highly dependent of network properties—clustering, path length and bridge width.13 Comparing

core network-level properties, such as density, clustering, path length and size, we find minuscule

differences between high and low-uptake villages (Table 1).

Second, past work has highlighted the importance – for diffusion of information across networks

– of the identity (Banerjee et al., 2013) and network position (Larson, Lewis and Rodrıguez, 2017) of

initial ‘seeders’. In Table 3, we compare the individual attributes as well as network characteristics

of the those attending GAPP’s inception meetings and find small and insignificant differences in

seeders’ characteristics in high- and low-uptake villages.14

Next, in order to better account for the observed variability in peer effects, we present a new

theory that is grounded in an intuition gleaned from focus group discussions and open-ended inter-

views with villagers in the study area.
13Similarly, network density is thought to support public goods provision in ethnically homogenous communities

by allowing information on defectors’ behavior to spread fast and wide (Miguel and Gugerty, 2005).
14Those villages differ, however, in the number of seeders. While this may account for differences in uptake, it

cannot explain differences in the magnitude of peer effects, especially since our main specification controls for meeting
attendance.
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Variable Sample High uptake Low uptake ∆ min max
Outcome % adopters 0.29 0.33 0.21 0.12*** 0.00 1.00

% heard 1.00 1.00 1.00 0 1.00 1.00
% satisfied 0.36 0.40 0.26 0.13 0.00 1.00

Individual age 40.06 39.99 40.21 -0.22 18.00 88.00
% females 0.28 0.30 0.24 0.06 0.00 1.00
income 2.79 2.81 2.74 0.07 1.00 5.00
secondary education 0.47 0.49 0.42 0.07 0.00 1.00
% use phone 0.81 0.82 0.78 0.04 0.00 1.00
% leaders 0.28 0.29 0.27 0.02 0.00 1.00
political participation index 0.36 0.36 0.36 0 -0.88 1.49
pro-sociality 0.20 0.19 0.21 -0.02 0.00 1.00

Network degree 29.43 27.66 33.11 -5.44 3.00 227.00
betweenness 666.04 596.48 810.88 -214.4 0.00 16385.53
clustering coefficient 0.33 0.34 0.32 0.02 0.05 0.84
N 262.00 177.00 85.00 92

Table 3: Descriptive statistics meeting of attendees in the 16 villages sampled. The table reports
mean values for the sample, as well as for low- and high-uptake villages. Network characteristics
are calculated from the union network. Difference in means are tested using a t-test, with standard
errors clustered at the village level; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

6 Model: networks and (political) technology adoption

In this section, we present a model of social networks and technology adoption. The starting

point of our theory is a simple intuition: that the importance of peers (network ties) in supporting

social learning and facilitating technology adoption depends crucially on the extent to which the

newly introduced good produces positive externalities. Unlike new technologies examined by recent

studies of diffusion, political communication technologies have significant positive externalities.

These externalities may affect the extent to which communication, particularly by early adopters,

conveys accurate information.

In classic models of technology adoption, innovations spread through social ties (Coleman et al.,

1966). Adopting an innovation is risky due to uncertainty over perceived costs and benefits. Social

ties facilitate diffusion because they allow agents to learn about the new innovation not only from

their own experience, but also from the experience of their peers (Rogers, 1962). As such, agents

with more neighbors (i.e. larger number of social ties) learn faster, because they benefit from the

experiences of a greater number of people. The adoption outcomes of neighbors also tend to be

more correlated, as peers update their priors from the same events.

Yet to date, models of social learning primarily consider goods that produce minimal external-

ities; that is, goods for the payoff derived from adoption does not depend on the adoption decision
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of other agents. For example, the benefits of adopting a new fertilizer depend almost exclusively

on an individual farmer’s actions. A farmer can learn from her neighbor about how effective a new

fertilizer is, but the neighbor’s use of fertilizer on his crop does not affect the farmer’s own crop

yield.15 Importantly, this leads past theories to implicitly assume that neighbors will share accurate

information about their experience with the good. The assumption of truthful communication may

be warranted for a good with no externalities, where the payoff of an agent does not depend on the

payoff of other agents.

New (political communication) technologies that feature positive externalities–i.e., goods for

which the benefits from adoption increase with the number of adopters—may hinder truthful com-

munication which, in turn, may annihilate peer effects. With positive externalities, early adopters

must convince others to adopt, and therefore have an incentive to exaggerate benefits. Their

neighbors, recognizing this incentive, may discount information they receive from early adopters.

Communities can address the problem of truthful communication by employing a variety of infor-

mal institutions. For example, early adopters who are embedded in communities with high levels

of social cohesion, or where local leaders can coordinate social sanctions for sharing inaccurate

information, may be more likely to provide an honest assessment about the program’s efficacy. In

these cases, communication about the new technology is truthful. Being truthful, communication

is most useful, and displays the same benefits as for goods with no externalities. However, com-

munities may vary in their ability to enforce truthful communication. Thus, compared to goods

without externalities, goods with externalities will exhibit greater variation in the extent to which

social networks facilitate adoption of the good. Some communities, perhaps due to pre-existing but

largely unobservable informal institutions and norms, are able to enforce truthful communication

while others are not. The role of peer effects on adoption will be lower in communities where

truthful communication is not enforced.

Thus, we introduce a model to highlight the key role that externalities play in social learning

processes, and especially how externalities condition the role social networks play in technology

adoption. In our setting, agents decide whether to adopt a new technology (also referred to as a

good). Adoption is costly, and their decision depends on an unobserved state of the world that
15In practice, all goods feature a minimal amount of externalities, for if no other agent invests in the new technology,

then the company producing it may go bust, thereby affecting the focal agent’s ability to invest in it. Yet, this sort
of externality is negligible, compared to goods characterized by joint production and diffuse benefits.
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conditions how useful the technology is. Agents are connected on a network, and learn about the

state of the world from their neighbor’s experience with the good.

We depart from standard models (eg. DeGroot, 1974; Bala and Goyal, 1998) in two ways. First,

we consider not only goods without externalities, but also goods that feature positive externalities.

Second, we make communication strategic; instead of simply observing their neighbors, agents hear

reports about their experience with the good. Using this simple setup, we show that the standard

result that networks foster learning and adoption hinges on whether agents maintain truthful com-

munication; that is, they convey accurate information to their neighbors about their experience.

We then show that goods without externalities support truthful communication, reproducing the

main comparative statics of the canonical models. However, goods with externalities do not nec-

essarily support truthful communication and thus do not necessarily enjoy the benefits of social

learning.

Formally, consider a society of N agents connected by the undirected graph g = (G,N), where

G is a set of ties. Agents decide whether to adopt a technological innovation or not. There is an

unobserved, binary state of the world: θ ∈ {H,L}. In the high state H, the technology is useful,

while it is not in the low state L. Thinking of a good with positive externalities, this captures, for

example, whether the government is responsive to or ignores incoming messages from constituents.

At t= 0, nature randomly draws the state of the world θ. Agents have a prior belief πi = Pr(θ=H)

of being in the high state, and each gets an independent signal about the state, si ∈ {H,L}.

The signal is informative: it matches the true state with probability pi = Pr(si = θ) > 1/2. The

probability pi differs across agents, to capture varying degrees of expertise: agents with a higher

pi have more expertise in the sense that they observe correct signals more often. At t = 1, each

agent i sends a message mij ∈ {H,L} to each of their neighbors j ∈ Ni(g) to inform them about

the signal they observed.16 At t = 2, each agent decides whether to adopt the innovation (yi = 1)

or not (yi = 0) and her payoff ui(.,θ) accrues.

Using different payoff functions, we consider a good without externalities, and a good with

externalities. In both cases, adopting incurs cost ci ∈ (0,1). In the high state, adopting generates a

benefit B (normalized to 1) with some probability. It generates a benefit of 0 in the low state. The

cases differ in that without externalities, one’s payoff depends only on her action; ui = ui(yi,θ).
16Recall that Ni(g) is the set of neighbors of agent i on graph g.
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Specifically:

ui(yi,θ) = qθ(yi)−yici (1)

where qθ : {0,1} → [0,1] is the probability of reaping benefit B = 1 in state θ. We assume that

irrespective of the state, not adopting gives a benefit of 0: qθ(0) = 0. Adopting allows reaping

benefit B = 1 with positive probability in the high state, but with probability 0 in the low state:

qH(1) > qL(1) = 0. If the technology is a good with significant externalities, as is the case with

political communication technologies, i’s payoff crucially depends on the actions of other agents:

ui = ui(yi,y−i,θ), where y−i = (yj)j 6=i the vector of actions taken by all other agents. We use:

ui(yi,y−i,θ) = qθ

yi+∑
j 6=i

yj

−yici (2)

With positive externalities, the probability of reaping the benefit also depends on the actions

of others, with qθ : {0, ...,N} → [0,1]. As is the case without externalities, if no one adopts there

is a benefit of 0 in all states, with qθ(0) = 0. In the high state, the probability of reaping benefit

B increases with the number of adoptions: qH(n)< qH(n+ 1). In the low state, adoption gives no

benefits: qL(n) = 0 for any n.

The benefits of truthful communication

We start by examining what drives the adoption decision both with and without externalities, and

then examine behavior under the assumption that agents enforce truthful communication, to show

that our model reproduces a set of standard results.

We first show that in equilibrium, agents have threshold strategies: they adopt the new tech-

nology if they are sufficiently certain that they are in the high state. In equilibrium, agent i

chooses the action that maximizes her expected payoff, using her available information Sig ∈ Iig

to update her prior about the state. This information is a vector containing her signal and mes-

sages she received from her neighbors on network g; that is, Sig = (si,(mji)j∈Ni(g)). The set

Iig = {0,1}|Ni(g)|+1 contains all possible realizations of such vector. In equilibrium, i’s action

y∗ig(Sig) solves maxyi Eθ[ui(yi, .,θ)|Sig]. She adopts and sets y∗ig(Sig) = 1 if Si contains enough evi-

dence favoring the high state against the low state, as captured by a higher (log) likelihood ratio
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l(Sig) = log Pr(θ=H|Sig)
Pr(θ=L|Sig) . How much evidence is necessary depends on an individual threshold ai.

Agents that have a higher cost of adoption, or were originally too pessimistic about the state have

a higher threshold. Formally:

Proposition 1 (Threshold strategy) In any perfect Bayesian equilibrium, agents have a thresh-

old strategy such that y∗ig(Sig) = 1 ⇐⇒ l(Sig)≥ ai.

Under truthful communication, agents send messages that match their observed signal: mij = si.

Truthful communication is important, because this is when messages are most informative. The

value Vig of i’s information on graph g under truthful communication is her expected payoff from all

potential information she could receive Iig, given that neighbors communicate truthfully and that

she responds optimally to that information. Formally, Vig =
∑
Si∈Ii

Eθ[ui(y∗i (Si), .,θ)|Si]Pr(Si). In a

perfect Bayesian equilibrium where communication is not truthful, agents lie with some probability

about their signal. Intuitively, i’s information is most valuable under truthful communication, be-

cause lies introduce additional noise that make her inferences about the state less precise. Formally:

Proposition 2 (Truthful communication is most valuable) Let Ṽig be the value of informa-

tion in an equilibrium profile where some j ∈Ni(g) misrepresents her signal to i with some proba-

bility. We have

Ṽig ≤ Vig

Truthful communication has three important implications. First, agents with larger neighbor-

hoods learn at a faster rate, because they observe more signals, allowing them to make better

inferences about the state of the world. In other words, the value of i’s information increases with

the size of her neighborhood. We show that i’s information is more valuable when she has an

additional neighbor:

Proposition 3 (Larger neighborhoods are conducive to better learning) Consider graphs

g and g′, constructed by adding a tie between i and j on g. We have

Vig ≤ Vig′
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Because neighbors share their experiences, they learn from the same sources of information and

make more similar inferences. Note that such peer effect gets stronger the more neighbors a dyad

has in common, because the two neighbors acquire more similar information. Formally, this means

that connecting two agents increases the correlation of their (log) likelihood ratios:

Proposition 4 (With peer influence, the posteriors of neighbors are more correlated)

Consider graphs g and g′, constructed by adding a tie between i and j to g. Let ρ(x,y) the correlation

coefficient between x and y. Under truthful communication, we have

ρ [l(Sig), l(Sjg)]≤ ρ
[
l(Sig′), l(Sjg′)

]

Experts are more likely to observe correct signals.17 As such, agents place a higher weight on the

messages of experts when making inferences about the state. By the same reasoning, experts are

less susceptible to peer influence, because they place a higher weight on their own signal. Formally,

we show that the impact of j observing the high versus low signal on i’s posterior grows with j’s

expertise.

Proposition 5 (Experts have more influence) Consider the vectors of messages SHig and SLig

that differ only in that one message mki =H in SHig and mki = L in SHig . Under truthful communi-

cation, we have
∂

∂pj

[
l(SHig )− l(SLig)

]
> 0.

When communication is not truthful, agents put less weight on the messages sent by their

neighbors to make their inferences about the state of the world. In the limit, the messages they

receive are uninformative, and agents only use their own signal when deriving their posterior:

Ii = {si}. When this is the case, propositions 3, 4 and 5 do not hold anymore: agents with larger

neighborhoods do not necessarily learn faster, the posteriors of neighbors are not more correlated

than those that are not connected, and expert neighbors do not wield more influence.
17By definition, expertise is having a higher pi, which is probability of observing correct signals.
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Comparing goods with and without externalities

While goods without externalities always support truthful communication, goods with externalities

may not. To shed more light onto this, we introduce a cost of lying. This may represent a moral

cost, or a reduced form for social sanctions enforced by the community to foster cooperation.

Specifically, we assume that agent i incurs a cost κ ≥ 0 for every message mij different from the

signal si she observed. Payoff functions become:18

ui(yi,mi,θ) = qθ(yi)−yici−κ
∑

j∈Ni(g)
1{mij 6= si}

ui(yi,y−i,mi,θ) = qθ

yi+∑
j 6=i

yj

−yici−κ ∑
j∈Ni(g)

1{mij 6= si},

with 1{.} the indicator function.

Without externalities, agents have no incentive to lie: lying brings no benefits, and creates

costs. In such case, we have the following proposition:

Proposition 6 Without externalities, truthful communication is a perfect Bayesian equilibrium for

any κ≥ 0. It is the unique equilibrium for any κ > 0.

With externalities, however, truthful communication may not be an equilibrium, because i has

an incentive to announce state H, increase j’s posterior, to encourage j to adopt. A high enough

cost of lying deters such behavior and establishes truthful communication. Formally:

Proposition 7 With externalities, there are thresholds κ̄1, κ̄2 with 0≤ κ̄1≤ κ̄2≤ 1 such that truthful

communication is a perfect Bayesian equilibrium if and only if κ ≥ κ̄1 and is the unique perfect

Bayseian equilibrium for any κ > κ̄2.

7 Empirical implications of the model

Our theoretical findings qualify the range of goods for which social networks facilitate diffusion.

Specifically, for goods with no (or minimal) externalities, agents with larger neighborhoods learn
18Note that under truthful communication, the cost κ is never incurred, and payoff functions reduce to the expres-

sions in 1 and 2.
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faster, and outcomes of neighbors are more highly correlated because such technological innova-

tions are compatible with truthful communication. However, for goods with significant externali-

ties, truthful communication can break down, in which case social ties do not provide additional

advantage.

Yet, truthful communication need not always break down within communities. Truthful com-

munication increases the more that agents are concerned about possible social costs of ‘defection’,

κ (Habyarimana et al., 2009). Should a community manage to impose truthful communication

(κ≥ κ̄1), the diffusion process of goods with positive externalities with respect to peer effects will

behave as goods without externalities.

There are several observable implications of the model.

1. Variation across networks in the support of diffusion of goods with externalities, above and
beyond what can be explained by variation in hearing rates.

2. Discounting of positive signals (peers’ recommendations) when truthful communication is not
enforced.

3. Strong ties will be more effective than weak ties in supporting truthful communication, and
therefore, in supporting diffusion.

4. Experts will have a stronger peer effect than novices when a network supports diffusion, as
their signal carries greater weight.

We test these implications in turn. First, as shown above, there is variation in our core result

on peer effects: these effects do not necessarily hold when running the model separately for each

community (Figure 4). The model shows why not all communities necessarily solve the problem

of truthful communication (proposition 7). For goods that have large externalities, social networks

may not support the process of technology diffusion if nodes do not trust the signal that their

neighbors emit.

Villages differ in the extent to which peer effects foster adoption above and beyond what can be

explained by diffusion of information about the existence of the platform. The model emphasizes

that differential effects owe to agents processing differently the information they obtain from their

peers about the technology. An important alternative explanation would be that agents simply

vary in the extent to which they communicate about the technology, for which we find little sup-

port. First, our explanation and the alternative are not completely distinct, since hearing may

be endogenous to the enforcement of truthful communication: seeds in low-uptake villages may
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choose not to discuss the platform with neighbors, internalizing the fact that their input is likely

to be down-weighted. Second, although high-uptake villages hear about and adopt the platform

at higher rates, the magnitudes are very different (Table 1). High-uptake villages hear about the

U-Bridge platform 65% more than low-uptake villages, but adopt it 250% more, suggesting that

other factors are at play.

Since the dimensions explaining differences in hearing and uptake need not be related to so-

cial influence (Larson, Lewis and Rodrıguez, 2017), we investigate influence more specifically by

comparing peer effects in adoption and peer effects in hearing across villages. We estimate peer

effects in hearing for each village using the same procedure as for peer effects in adoption: for each

village, we regress hearing on the number of hearing neighbors, using a similar set of controls. We

then compare high- and low-uptake villages. The effect of a peer adopting is 3.2 percentage points

higher in high-uptake villages than in low-uptake ones. The effect of a peer hearing is only 1.0

percentage point higher in high-uptake villages than in low-uptake ones.19

Second, we find evidence of discounting signals about the technology from peers. In villages that

do not support the diffusion of technologies with externalities, agents should not trust the messages

sent by their neighbors. We test this by decomposing peer effects into three components: (1)

whether i’s neighbors adopted the technology, (2) whether they discussed the technology with agent

i, and (3) whether at least one of them reports being satisfied with the technology (Table 2, columns

3 and 6). Our theoretical expectation is that while neighbors’ satisfaction should significantly

increase the likelihood of adoption in high-uptake villages, it should have no discernible effect in

low-uptake villages.

Figure 5 confirms the model’s prediction. Reestimating the model reported in Table 2 (column

3) separately for high- and low-uptake villages reveals that the marginal effect of having at least

one satisfied neighbor is 1.9 percentage points in high-uptake villages, it is effectively zero in low-

uptake villages. Figure 5 also underscores another important finding: social diffusion processes

are a function of the nature of the information being communicated, above and beyond the mere

existence of a social tie (Larson and Lewis, 2017). While the effect of communication in high uptake
19 Regressing estimates from a model in an auxiliary model introduces heteroscedasticity (Lewis and Linzer, 2005).

We thus follow Shalizi (2018), and estimate weighted least square regressions, whereby the weights are calculated as the
inverse variance of the dependent variable. We account for any remaining heteroscedasticity by using heteroscedastic-
robust standard errors. The difference in peer effects on adoption is significant at the 10 percent level (p-value =
.053). The difference in peer effects on hearing is not statistically significant (p-value = .37).
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Figure 5: Components of social influence in high and low uptake villages. Marginal effect of one
adopting neighbor (contagion) on the probability of adoption, with the additional effects of interpersonal
communication with the neighbor (communication), and of that neighbor being satisfied (satisfaction). Com-
munication most fosters adoption. High-uptake villages have larger effect sizes. Satisfaction has almost no
effect in low uptake villages.

villages is 7.1 percentage points, in low-uptake villages it is 3.2 percentage points.

A third implication is that some types of networks are more likely to facilitate truthful com-

munication than others. We have argued that strong ties are better positioned to enforce truthful

communication, given the higher social cost of mischaracterizing the costs and benefits of the new

technology. To test this argument, we disaggregate all network relations into simple ties (i shares a

single type of relationship with j), and complex ties (i’s relationship with j is based on more than

one of four types of ties). We then reestimate our absolute threshold model, first comparing the

effect of a complex tie to that of any simple tie, then to that of each kind of simple tie. Consistent

with our expectation, we find that peer effects are stronger for complex ties than for simple ties

(Table 4, column 1), and that, among simple ties, friendship and family ties are most influential

(column 2).

Finally, in our model, agents learn from their neighbors’ signal about the state of the world:

θ ∈ {H,L}. Proposition 5 predicts that agents put more weight on the signals emitted from political

experts (e.g., community leaders) who are knowledgeable abut the responsiveness of district officials

as compared to the average non-elite villager. This yields a simple testable implication: the marginal

effect of a neighboring leader on adoption should be higher than that of an “ordinary” neighbor.20

To test this proposition, we modify our main specification by disaggregating our core explanatory

variable – the number of adopting neighbors – into two separate variables measuring the number
20Being a leader is a binary variable that equals 1 for respondents who self-reported that they occupy one of several

formal leadership positions within the village.
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Dependent variable: adopt
Simple vs. complex ties Types of relationships

(1) (2)
# adopting simple ties, βs 0.024∗∗∗

(0.005)
# adopting simple family 0.015∗

(0.008)
# adopting simple friends 0.032∗∗∗

(0.011)
# adopting simple lender 0.018

(0.011)
# adopting simple solver 0.010

(0.010)
# adopting complex ties, βc 0.039∗∗∗ 0.038∗∗∗

(0.010) (0.010)
degree 0.001∗ 0.001∗

(0.001) (0.001)
Constant 0.119 0.114

(0.077) (0.079)
βc−βs 6= 0, F statistic 2.21 _
Controls X X
Observations 3,019 3,019
R2 0.248 0.254

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Network types. OLS estimates with village-level fixed effects. Heteroskedastic standard errors
in parentheses. Model 1 reports the effect of one adopting neighbor with whom i shares a single type of
relationship (simple tie) and more than one type of relationship (complex tie). Models 2 breaks down simple
ties into family, friends, leader, and solver. Complex ties are weakly more influential than simple ties (F-test
not significant). Friendship and family ties are the most influential simple ties.

of adopting peers and the number of adopting leaders, and estimate this model on the set of

peers. Results, reported in Table 5 suggest that the probability of adoption is somewhat higher

for connections to leaders as compared to peers, whether using the entire pooled sample (column

1), or subsetting to only high-uptake villages where networks support social diffusion (column 2).

Note, however, that these differences are not statistically significant.
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Dependent variable: adopt
Leader: all Leader: high Leader: low

(1) (2) (3)
# adopting peers, βp 0.021∗∗∗ 0.020∗∗ 0.008

(0.007) (0.009) (0.008)
# adopting leaders, βl 0.032∗∗∗ 0.029∗∗∗ 0.012

(0.008) (0.010) (0.008)
degree (peers) 0.003∗∗ 0.004∗∗ 0.003∗

(0.001) (0.002) (0.002)
degree (leaders) 0.002 0.003 0.002

(0.003) (0.004) (0.004)
Constant 0.094 0.076 0.152∗∗∗

(0.081) (0.085) (0.047)
βp−βl 6= 0, F statistic 0.97 0.42 0.1
Controls X X X
Observations 2,585 1,202 1,383
R2 0.233 0.251 0.180

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Leader vs. peer effects. OLS estimates with village-level fixed effects. Heteroskedastic standard
errors in parentheses. Models 1-3 are estimated on the sample of citizens for all villages (model 1), then
separately for high and low-uptake villages (models 2 and 3). Leader and peer effects are significant on
average and in high-uptake villages. Leaders’ influence is weakly higher than peer’s influence (F statistic not
significant). Models 4: although not significant, leaders are less sensitive to peer influence.
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What kind of communities support peer effects?

Our model suggests that networks that support peer effects do so because some (informal or formal)

institutions manage to enforce truthful communication. While we are unable to identify what these

institutions may be, we test three classes of explanations that past research has advanced as means

to overcome collective action problems arising from externalities: (a) pro-sociality; (b) leadership

structure, and especially leadership concentration; (c) and ethnic (and religious) homogeneity. In

practice, we run separate models in which we regress our estimates of village-level peer effects

(Figure 4) on a range of proxy variables:21

Pro-sociality: is measure as village mean contributions in two lab-in-field experiments: (a) public

good game and (b) dictator game. While dictator games measure the extent to which nodes in-

ternalize the payoffs of other co-villagers, public goods game measure how villagers balance their

private interests against the interests of their group. Both measures—which have been shown to be

correlated with communities’ outcomes outside the laboratory setting (Grossman and Baldassarri,

2012)—should support an equilibrium of truthful communication.22

Leadership structure: is proxied by Leadership concentration, calculated as a Herfindahl con-

centration index of ties to informal leaders in a village network.23 Concentrated leadership allows

coordinating communities around shared goals (Rojo, Jha and Wibbels, 2014), as well as coordinat-

ing punishment of (potential) defectors (Grossman and Baldassarri, 2012) in the face of externalities.

Homogeneity: is measured using Herfindahl concentration indices for both (a) Ethnicity and (b)

Religion derived from the 2014 Ugandan census. Homogeneity helps overcoming externalities due

to potential defectors’ fear that information on their behavior would be transmitted widely (Hab-

yarimana et al., 2009).

Figure 6 shows the effect of village-level features on the village-level peer effect.24 Both measures
21See footnote 19 for details about estimation.
22A detailed description of the games can be found in the SI.
23Survey respondents were asked to report whom they considered to be the most effective leader in their community.

We defined as an informal leader any such individual that was named by at least five respondents.
24Figure 3 in the SI shows scatter plots of the data used to construct this figure.
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of pro-sociality have a large positive and significant association with peer effect. This finding

is consistent with the idea that the more individuals care about the utility of their neighbors,

the more likely it is that communication of information about new technology is accurate and

truthful communication an equilibrium. In addition, we find evidence that leadership concentration

supports truthful communication in the face of externalities. These findings are consistent with

our theoretical framework.

●

●

●

●

●

Ethnic concentration (12)

Religious concentration (15)

Pro−sociality − dictator (15)

Pro−sociality − public good (15)

Leadership concentration (14)

−5.0 −2.5 0.0 2.5

Standardized effect size

V
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Figure 6: Determinants of village-level peer effects. Each row reports separate weighted least square
estimates of village-level peer effect (figure 4) on the row covariate controlling for village satisfaction, weighted
by inverse variance of the DV. Bars represent heteroskedastic 90 and 95 percent confidence intervals. Outliers
with high leverage excluded (sample sizes in parenthesis).

8 Conclusion

What explains variation in the uptake of new political communication technologies? In this paper,

we have shown that the adoption of political communication technologies—an increasingly common

form of political participation—is powerfully influenced by peer effects. Across the sixteen Ugandan

villages we studied, the likelihood of an individual adopting the new technology is a function of the

number of her neighbors who had adopted the technology. This finding contributes to a growing

body of work examining the determinants of uptake for PCT, looking beyond the role of individual

attributes, neighborhood characteristics, and perceptions of government responsiveness to investi-

gate the role of social networks in adoption choices. As such, it contributes to a literature that

investigates the adoption of new technologies, particularly in the context of low income countries.

However, while we find robust evidence of peer effects on technology adoption in the aggregate,

this finding masks variation in the role of peer effects across villages. Indeed, peer effects were only

observed in a subset of villages, suggesting that diffusion processes of PCT may differ importantly

from those of more commonly studied agricultural technologies. We develop a model motivated
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by the intuition that the information sharing process within a network may differ for goods that

have minimal externalities, as in the case of a good like a fertilizer, or positive externalities, as in

the case of PCT. The model serves to highlight differences in the diffusion process across these two

types of technologies.

There are several features of political communication technologies that are relevant to under-

standing processes of diffusion. First, adoption of PCTs can involve personal risks and public

benefits. Second, the newness of the technology means that there is uncertainty about the extent

and natures of the costs and benefits of adoption. Third, there are externalities in adoption—the

technology is only effective if a substantial number of people use it. These factors give us reason to

believe that peer effects are likely to affect adoption, but also that early adopters have incentives to

exaggerate the benefits of adoption. It then follows that individuals may discount the information

they receive from initial adopters. When a community is able to enforce truthful communication—

for example through informal institutions—the diffusion of innovations with externalities looks

similar to the diffusion process of goods without externalities: individuals with larger networks

learn faster and are more likely to adopt, and the adoption choices of network ‘neighbors’ are more

correlated than the adoption choices of unconnected nodes. However, if a community is unable to

enforce truthful communication, individuals do not learn from their neighbors and adoption rates

of the new technology remain low.

Our study qualifies the long-standing argument that peer effects are ubiquitous in the process

of technology adoption. We show that while peer effects do facilitate the adoption of goods where

the benefit one derives from using the good does not depend on others’ adoption, peer effects may

not facilitate adoption for goods where production of benefits is joint. To understand whether

and when peer effects will facilitate adoption we must assess both whether or not externalities

exist as well as whether communities have mechanisms for enforcing truthful information about

the costs and benefits of the good. The adoption of new forms of political participation follows a

different trajectory than the adoption of many agricultural practices, because political participation

is subject to externalities. This insight may go a long way in explaining low rates of adoption of

PCTs, but also the considerable variation in rates of adoption we observe across communities.

We further find that when villagers enforce truthful information sharing, adoption rates are

significantly higher as networks support a process of ‘social contagion.’ Our finding that peer
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effects, under certain conditions, supports technology diffusion is quite robust, and likely not simply

a reflection of homophily. Specifically, our estimated peer effects are robust to various matching

estimators, to flexibly controlling for the size of one’s network (degree), and to an innovative

instrumental variable approach for dealing with endogenous treatment exposure.

Though we are able to demonstrate that not all villages solve the problem of truthful com-

munication, our sample size at the community level is too small to explore rigorously when and

how villages overcome the incentive to misrepresent the state of the world to their neighbors. In

addition, our model does not consider the case of significant negative externalities. We leave these

important questions for future work.
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Figure A.1: High and low-uptake villages selected for complete network data collection
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Figure A.2: Relevant message senders by village

Proofs

Proof of proposition 1. Consider a consistent strategy profile σ. I show that if σ is a perfect

Bayesian equilibrium, then any agent i has a threshold strategy. Let π̂i(Sig) = Pr(θ =H|Sig) be i’s

posterior on the state. Using Baye’s theorem,

π̂i(Sig) = Pr(Sig|θ =H)πi
Pr(Sig|θ =H)πi+ Pr(Sig|θ = L)(1−πi)

Sequential rationality implies that y∗(Sig) = 1 ⇐⇒ Eθ[ui(1, .,θ)|Sig]−Eθ[ui(0, .,θ)|Sig]≥ 0.

Consider first the case without externalities. In this case, Eθ[ui(1,θ)|Sig]−Eθ[ui(0,θ)|Sig] =
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π̂i(Sig)qH(1)− ci. As such, the condition Eθ[ui(1,θ)|Sig]−Eθ[ui(0,θ)|Sig] ≥ 0 is equivalent to the

following condition on π̂i(Sig):

π̂i(Sig)≥
ci

qH(1) (3)

Suppose that ci
qH(1) < 1. Then condition 3 is equivalent to l(Sig)≥ log

[ ci
qH (1)

1− ci
qH (1)

1−πi
πi

]
≡ ai.

Suppose that ci
qH(1) ≥ 1. Then condition 3 is equivalent to

(
1− ci

qH(1)

)
L(Sig)≥

ci
qH(1)

1−πi
πi

,

with L(Sig) = Pr(Sig |θ=H)
Pr(Sig |θ=L) the likelihood ratio. Since Li > 0, condition 3 is never met, and we define

ai ≡maxSig∈Iig l(Sig) + 1.

Consider now the case with externalities. In this case, we have:

Eθ[ui(1,y−i,θ)|Sig]−Eθ[ui(0,y−i,θ)|Sig] = π̂i

Eθ
qH

1 +
∑
j 6=i

yj

∣∣∣∣∣∣Sig
−Eθ

qH
∑
j 6=i

yj

∣∣∣∣∣∣Sig
−ci

Because qH is strictly increasing, we have Eθ
(
qH
(
1 +

∑
j 6=i yj

)
|Sig

)
> Eθ

(
qH
(∑

j 6=i yj
)
|Sig

)
. As

such, the condition Eθ[ui(1,y−i,θ)|Sig]−Eθ[ui(0,y−i,θ)|Sig]≥ 0 is equivalent to the following con-

dition on π̂i:

π̂i(Sig)≥ t= ci

Eθ
(
qH
(
1 +

∑
j 6=i yj

)∣∣∣Sig)−Eθ
(
qH
(∑

j 6=i yj
)∣∣∣Sig)

The rest of the proposition proves as in the case without externalities, with the exception that

we consider the cases where t < 1 and t≥ 1.

Proof of proposition 2. This is an immediate application of Blackwell et al. (1951) theorem. For

any strategy profile to satisfy sequential rationality, agent j sends the message mji that maximizes

her payoff. When indifferent, she may randomize. One may garble the conditional distribution of

mij under truthful communication to recover the conditional distribution of mji under untruthful

communication. Therefore, by Blackwell’s information theorem, Ṽig ≤ Vig.

Proof of proposition 3. Define ϕ : Iig′ → Iig that associates to each Sig′ ∈ Iig′ the same

Sig′ without its last message, which is an element of Iig. Define y0
ig′(Sig′) = y∗ig(ϕ(Sig′)). Re-
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call that y∗ig′ solves maxyi Eθ[ui(yi, .,θ)|Sig′ ]. As such, it must be that Eθ[ui(y∗ig′(Sig′), .,θ)|Sig′ ] ≥

Eθ[ui(y0
ig′(Sig′), .,θ)|Sig′ ]. This implies

Vig′ =
∑

Sig′∈Iig′

Eθ[ui(y∗ig′(Sig′), .,θ)|Sig′ ]≥
∑

Sig′∈Iig′

Eθ[ui(y0
ig′(Sig′), .,θ)|Sig′ ] = Vig

Proof of proposition 4. Recall that ρ(x,y) = Cov(x,y)√
V(x)V(y)

, with Cov(x,y) = E(xy)−E(x)E(y) the

covariance of x and y. Suppose i receives ni = |Ii| signals on g. Analogously, j receives nj signals.

Note that i and j have nij = |Ii∩Ij | signals in common. On g′, i and j each receive one additional

signal: I ′i = Ii∪{sj} and I ′j = Ij ∪{si}.

The proof first shows that the proposition holds given θ =H. Note that

log li(g) =
∑

k∈Ni(g)
(2sk−1) log pk

1−pk

E[l(Sig)|H] =
∑

k∈Ni(g)
(2pk−1) log pk

1−pk

V[l(Sig)|H] =
∑

k∈Ni(g)
pk(1−pk)

(
2log pk

1−pk

)2

Cov[l(Sig), l(Sjg)|H] = pk(1−pk)
∑

k∈Ni(g)∩Nj(g)

(
2log pk

1−pk

)2

Let λi =
(
2log pi

1−pi

)2
pi(1−pi). We have

V[l(Sig′)|H] = V[l(Sig)|H] +λj

Cov[l(Sig′), l(Sjg′)|H] = Cov[l(Sig), l(Sjg)|H] +λi+λj

For notational simplicity, let

Vi = V[l(Sig)|H]

C = Cov[l(Sig), l(Sjg)|H]

C ′ = Cov[l(Sig′), l(Sjg′)|H]
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These identities imply:

C ′−C = C+λi+λj√
(Vi+λj)(Vj +λi)

− C√
ViVj

∝ (C+λi+λj)
√
ViVj−C

√
(Vi+λj)(Vj +λi)

∝ (C+λi+λj)2ViVj−C2(Vi+λj)(Vj +λi)

= C[Viλi(2Vj−C) +Vjλj(2Vi−C)] + 2λiλj [ViVj−C2] +ViVj [λ2
i +λ2

j ]

Note that Vi = Vi\j +C, with Vi\j =
∑
k∈Ni(g)\Nj(g)

(
2log pk

1−pk

)2
pk(1− pk). As such, we have

2Vi−C ≥ 0, 2Vj−C ≥ 0, and ViVj−C2 = Vi\jVj\i+C[Vi\j +Vj\i]≥ 0. Together, this shows that

C ′−C ≥ 0.

Consider the case where θ = L. We have E[l(Sig)|L] =
∑
k∈Ni(g) log pk

1−pk
[2(1− pk)− 1], which

implies V[l(Sig)|L] =V[l(Sig)|H] and Cov[l(Sig), l(Sjg)|L] =Cov[l(Sig), l(Sjg)|H]. We show as when

θ =H that ρ
[
l(Sig′), l(Sjg′)

∣∣L]−ρ [l(Sig), l(Sjg)|L]≥ 0.

Proof of proposition 5. Note that log li(g,sj =H)− log li(g,sj = L) = log pj

1−pj
. As such,

∂ log li(g,sj =H)− log li(g,sj = L)
∂pj

= 1−pj
pj

> 0

Proof of proposition 6. Consider a strategy profile σ, and compare i’s expected payoff at t= 1

when sending a vector of messages mn
i containing n≥ 1 lies, EUi(mn

i ,si) to that of telling no lies,

EUi(m0
i ,si), after having observed her signal si. We have

EUi(mn
i ,si)−EUi(m0

i ,si) =−nκ

When κ = 0, i is indifferent between lying and telling the truth, so truthful communication is an

equilibrium. When κ > 0, telling the truth strictly dominates lying, so truthful communication is

the unique equilibrium.

Proof of proposition 7. Let π̂i(si) = Pr(θ=H|si) be i’s posterior on the state at t= 1. Consider

a consistent strategy profile σ, and compare i’s expected payoff when sending a vector of messages

mn
i containing n > 0 lies, EUi(mn

i ,si) to that of telling no lies, EUi(m0
i ,si) after having observed
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her signal si. We have

EUi(mn
i ,si)−EUi(m0

i ,si) = π̂i(si)∆Eσ−nκ,

with ∆Eσ = E
[
qH(

∑
j yj)|si,mn

i

]
−E

[
qH(

∑
j yj)|si,m0

i

]
the difference in the expected reward be-

tween telling those n lies and telling no lies in profile σ.

Note that truthful communication is an equilibrium if and only if EUi(mn
i )−EUi(m0

i ) ≤ 0

for all i, which requires ∆Etruthful ≥ 0. Under truthful communication, we have ∆Etruthful ≥

0 ⇐⇒ si = L. Suppose this is true. Then for truthful communication to be an equilibrium,

it must be that κ ≥ π̂i(si)∆Etruthful
n for any i and any n lies. Let Mig = {0,1}|Ni(g)| be the

set of vectors of messages that i can send. Truthful communication is an equilibrium for any

κ≥ κ̄1 ≡maxi∈N,mn
i ∈Mi,si∈{H,L}

π̂i(si)∆Etruthful
n .

Consider a strategy profile σ where there is some lying, with Σ the set of such profiles.

This profile is not a PBE if EUi(mn
i )−EUi(m0

i ) < 0 for all i and all mn
i ∈ Mi. Define κ̄σ ≡

maxi∈N,mn
i ∈Mi,si∈{H,L}

π̂i(si)∆E
n , and note that κ̄σ ≤ 1. If the maximum exists, define κ̄2≡maxσ∈Σ κ̄σ.

Otherwise, define κ2 ≡ 1.
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Table A.1: Determinants of Uptake at the Village-level

Senders/adult pop Messages/adult pop
(1) (2) (3) (4) (5) (6)

GAPP activities
Registration drive 2.357*** 2.327*** 10.296*** 9.768***

(0.223) (0.362) (1.909) (2.398)
Community meeting venue 0.572 0.436 0.521 3.851 3.307 3.638

(0.496) (0.369) (0.409) (3.216) (2.838) (3.426)
Service points (binary)
Primary school 0.306 0.465 0.410 1.269 1.661 1.622

(0.336) (0.295) (0.433) (2.321) (2.119) (3.309)
Health center -0.622 -1.091** -1.046* -3.478 -6.095* -6.243

(0.365) (0.428) (0.556) (2.417) (3.058) (3.975)
Distance to district capital 0.511*** 0.538** 2.845*** 3.126**

(0.162) (0.221) (0.909) (1.294)
Distance to Health Center -0.384** -0.093 -2.013 -0.869

(0.176) (0.197) (1.272) (1.213)
Census data
ELF 0.751 0.583 2.027 0.954

(0.644) (0.502) (3.378) (3.208)
% Secondary education 0.726* 1.336*** 3.861* 6.714***

(0.408) (0.275) (1.949) (1.920)
Village pop (log) -0.778** -1.122*** -2.892 -4.176**

(0.354) (0.289) (1.883) (1.765)
Constant 0.036 0.386 2.600*** -0.086 1.651 10.852***

(0.213) (0.294) (0.246) (1.123) (1.404) (2.282)

N 120 120 91 120 120 91
R2 0.217 0.520 0.580 0.147 0.332 0.342
Sample All villages All villages Registration villages All villages All villages Registration villages
- Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01
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1 Glossary of network concepts
A network, often called a graph, is a collection of nodes and of ties between these nodes. We
write the graph g = (G,N), where N is the set of nodes, and G is the set of ties, and a tie is a
pair (i, j), i, j ∈N . Networks can also be represented by an (N×N) adjacency matrix m, where
mij = 1 if there is a tie from i to j, and mij = 0 otherwise. The size of g is its amount of nodes.

A graph can be directed or undirected. In the former case, there is a distinction between a
tie from i to j and a tie from j to i. That is, we do not require that m is symmetric. In the
latter case, there is no distinction, and we require that m is symmetric. In what follows, we
define the network concepts used in the paper in the case of an undirected network.

• Neighbor: j is a neighbor of i if they are connected; that is, if (i, j)∈G. The neighborhood
of i is the set of i’s neighbors.

• Degree: the degree di of i is the number of neighbors i has. That is, di =
∑

j 6=imij .

• Isolate: i is an isolate if it has a degree of 0.

• Density: captures the amount of ties in g, relative to its size. A network of size n has
Tg = n(n− 1)/2 ties. Let tg =

∑
i<jmij be the amount of ties in g. The density of g is

Dg = tg/Tg.

• Clustering coefficient: the extent to which the friends of i are friends with each other.
Formally, it is the amount of triangles in i’s neighborhood normalized by the amount
of triangles in i’s neighborhood. It writes ci =

∑
j

∑
kmijmikmjk/

∑
j

∑
kmijmik, with

i 6= j, i 6= k,j < k.

• Path: a path between i and j is a route from i to j on the graph g. Formally, it is a sequence
of ties (i1, i2),(i2, i3), ...,(iK−1, iK) such that (ik, ik+1) ∈G for each k ∈ {1, ...,K−1}, with
i1 = i, iK = j, and each node in the sequence i1, ..., iK is distinct.

• Connected graph: a graph is connected if there is a path between any i, j ∈N

• Path length: the number of steps it takes to get from i to j on some path. Formally, the
length of path p= (i1, i2),(i2, i3), ...,(iK−1, iK) is K−1.

• Distance: the distance lij between i and j is the length of the shortest path between i and
j.

• Closeness centrality: how close is node i from the rest of the graph? The closeness
centrality of i is the mean distance between i and all other nodes of the graphs. It writes
Li =

∑
j 6=i lij/(N−1). The concept is not well-defined when the graph g is not connected.

• Betweenness centrality: how much do people have to go through node i? Betweenness
centrality is, for any j,k 6= i, the amount of shortest paths that go through i. The concept
is not well-defined when the graph g is not connected.
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2 Descriptive statistics
In this section, we discuss the construction of network ties (e.g., survey question verbatim; how
we deal with missingness), and provide additional information on the distribution of ties across
network types.

First, we provide verbatim excerpt from our in-person survey used to construct adjacency
matrices capturing within-village network ties.

“In each of the following questions, we will ask you to think about people in your community
and their relationships to you.”

• Family: “Think about up to five family members in this village not living in your house-
hold with whom you most frequently spend time. For instance, you might visit one
another, eat meals together, or attend events together.”

• Friends: “Think about up to five of your best friends in this village. By friends I mean
someone who will help you when you have a problem or who spends much of his or her
free time with you. If there are less than five, that is okay too.”

• Lender: “Think about up to five people in this village that you would ask to borrow a
significant amount of money if you had a personal emergency.”

• Problem solver: “Imagine there is a problem with public services in this village. For
example, you might imagine that a teacher has not come to school for several days or
that a borehole in your village needs to be repaired. Think about up to five people in this
village whom you would be most likely to approach to help solve these kinds of problems.”

Second, we report in Figure 1 the degree distribution across the four types of networks, as
well as in the union network:

0.0
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0.3

0 10 20 30 40

Degree

de
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Network

Friend

Family

Lender

Solver

Union

Figure 1: Degree distribution by network type.
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Understandably, we were unable to interview every individual in the village. This means
there are villagers for whom we only observe a fraction of their network: they were mentioned as
ties by other respondents, but were not interviewed in-person. About 25% of named individuals
fall in this category. Following standard practice, we exclude those nodes from the analysis.
Table 1 reports the number of individuals we surveyed in each village, the number of individuals
mentioned by at least one person (“alters”), and the number of adults living in each village,
according to 2014 census data. This information allows calculating the number of missing nodes.

Village N respondents N alters Adult Pct. non-interviewed Pct. non-interviewed
population alters population

A 30 42 32 0.29 0.06
B 237 335 320 0.29 0.26
C 160 218 180 0.27 0.11
D 283 374 355 0.24 0.20
E 263 382 429 0.31 0.39
F 205 298 292 0.31 0.30
G 163 212 230 0.23 0.29
H 254 322 358 0.21 0.29
I 168 309 251 0.46 0.33
J 185 267 313 0.31 0.41
K 204 283 296 0.28 0.31
L 229 308 269 0.26 0.15
M 197 281 303 0.30 0.35
N 225 291 226 0.23 0.00
O 189 265 198 0.29 0.05
P 192 276 258 0.30 0.26
Total 3184 4463 4310 0.29 0.26

Table 1: Network sampling. N alters reports the number of individuals mentioned as alters
in the network survey. Adult population from 2014 census data.
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3 Full regression models
This section reproduces the regression models in the main text, including control variables.
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Dependent variable: adopt
Parsimonious Baseline Decomposition Parsimonious Baseline Decomposition

(1) (2) (3) (4) (5) (6)
# adopting neighbors 0.035∗∗∗ 0.027∗∗∗ 0.019∗∗∗

(0.005) (0.005) (0.006)
% adopting neighbors 0.325∗∗∗ 0.218∗∗∗ 0.157∗∗∗

(0.052) (0.048) (0.057)
degree 0.002∗∗∗ 0.001∗ 0.0002 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
# neighbors who told me 0.062∗∗∗

(0.012)
% neighbors who told me 0.871∗∗∗

(0.198)
1+ satisfied neighbors 0.012 0.024∗∗

(0.012) (0.011)
age −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
female 0.006 0.007 0.002 0.005

(0.007) (0.007) (0.007) (0.007)
income −0.002 −0.002 −0.002 −0.002

(0.003) (0.003) (0.003) (0.003)
secondary education 0.072∗∗∗ 0.068∗∗∗ 0.078∗∗∗ 0.071∗∗∗

(0.012) (0.012) (0.012) (0.012)
use phone 0.004 0.002 0.004 0.002

(0.005) (0.005) (0.005) (0.005)
leader −0.008 −0.006 −0.007 −0.007

(0.013) (0.012) (0.013) (0.012)
political participation 0.025∗∗∗ 0.025∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.008) (0.008) (0.008) (0.008)
meeting attendance 0.178∗∗∗ 0.163∗∗∗ 0.187∗∗∗ 0.175∗∗∗

(0.026) (0.026) (0.027) (0.026)
pro-sociality −0.056∗∗∗ −0.056∗∗∗ −0.059∗∗∗ −0.062∗∗∗

(0.018) (0.017) (0.018) (0.017)
geography −0.118∗∗∗ −0.123∗∗∗ −0.103∗∗∗ −0.114∗∗∗

(0.023) (0.022) (0.023) (0.023)
Constant 0.061 0.125∗ 0.124∗ 0.052 0.109 0.093

(0.073) (0.076) (0.075) (0.073) (0.075) (0.075)
Observations 3,184 3,019 3,019 3,184 3,019 3,019
R2 0.139 0.247 0.273 0.116 0.233 0.251

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Main specifications, controls included. This table reproduces Table ?? in the main text, and reports control variables.
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Dependent variable: adopt
Simple vs. complex ties Types of relationships

(1) (2)
# adopting simple ties, βs 0.024∗∗∗

(0.005)
# adopting simple family 0.015∗

(0.008)
# adopting simple friends 0.032∗∗∗

(0.011)
# adopting simple lender 0.018

(0.011)
# adopting simple solver 0.010

(0.010)
# adopting complex ties, βc 0.039∗∗∗ 0.038∗∗∗

(0.010) (0.010)
degree 0.001∗ 0.001∗

(0.001) (0.001)
age −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0002)
female 0.006 0.010

(0.007) (0.007)
income −0.002 −0.002

(0.003) (0.003)
secondary education 0.072∗∗∗ 0.071∗∗∗

(0.012) (0.012)
use phone 0.004 0.002

(0.005) (0.005)
leader −0.009 −0.008

(0.013) (0.013)
political participation 0.025∗∗∗ 0.026∗∗∗

(0.008) (0.008)
meeting attendance 0.177∗∗∗ 0.173∗∗∗

(0.026) (0.026)
pro-sociality −0.056∗∗∗ −0.054∗∗∗

(0.018) (0.018)
geography −0.118∗∗∗ −0.116∗∗∗

(0.023) (0.023)
Constant 0.119 0.114

(0.077) (0.079)
βc−βs 6= 0, F statistic 2.21 _
Observations 3,019 3,019
R2 0.248 0.254

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Network types, controls included. This table reproduces Table ?? in the main
text, and reports control variables.
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Dependent variable: adopt
Leader: all Leader: high Leader: low

(1) (2) (3)
# adopting peers, βp 0.021∗∗∗ 0.020∗∗ 0.008

(0.007) (0.009) (0.008)
# adopting leaders, βl 0.032∗∗∗ 0.029∗∗∗ 0.012

(0.008) (0.010) (0.008)
degree (peers) 0.003∗∗ 0.004∗∗ 0.003∗

(0.001) (0.002) (0.002)
degree (leaders) 0.002 0.003 0.002

(0.003) (0.004) (0.004)
age −0.0005∗∗ −0.001∗∗ −0.0002

(0.0002) (0.0004) (0.0003)
female 0.012∗ 0.007 0.014∗∗

(0.007) (0.014) (0.007)
income −0.002 −0.002 −0.001

(0.003) (0.005) (0.003)
secondary education 0.067∗∗∗ 0.089∗∗∗ 0.046∗∗∗

(0.012) (0.020) (0.014)
use phone 0.003 0.010 −0.001

(0.005) (0.009) (0.005)
political participation 0.024∗∗∗ 0.029∗∗ 0.017∗∗

(0.008) (0.015) (0.007)
meeting attendance 0.184∗∗∗ 0.196∗∗∗ 0.153∗∗∗

(0.030) (0.040) (0.048)
pro-sociality −0.060∗∗∗ −0.106∗∗∗ −0.024

(0.018) (0.035) (0.018)
geography −0.097∗∗∗ −0.086∗∗∗ −0.157∗∗∗

(0.023) (0.026) (0.041)
Constant 0.094 0.076 0.152∗∗∗

(0.081) (0.085) (0.047)
βp−βl 6= 0, F statistic 0.97 0.42 0.1
Observations 2,585 1,202 1,383
R2 0.233 0.251 0.180

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Leader vs. peer effects, controls included. This table reproduces Table ?? in
the main text, and reports control variables.
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4 Robustness checks

4.1 Exclude village A

We first test whether our main results are sensitive to dropping village A, which has a sig-

nificantly smaller number of respondents (30) compared to the other villages (mean number

of respondents is 210). Table 5 shows that results are virtually unchanged. We find a strong

positive relationship between the number (or share) of adopting neighbors and one’s adoption

choice, with magnitudes almost identical to the main specification.
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Dependent variable: adopt
Parsimonious Baseline Decomposition Parsimonious Baseline Decomposition

(1) (2) (3) (4) (5) (6)
# adopting neighbors 0.036∗∗∗ 0.028∗∗∗ 0.021∗∗∗

(0.005) (0.005) (0.006)
% adopting neighbors 0.342∗∗∗ 0.235∗∗∗ 0.173∗∗∗

(0.052) (0.048) (0.057)
degree 0.002∗∗∗ 0.001∗ 0.0002 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
# neighbors who told me 0.062∗∗∗

(0.012)
% neighbors who told me 0.870∗∗∗

(0.199)
1+ satisfied neighbors 0.011 0.024∗∗

(0.012) (0.011)
age −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
female 0.007 0.008 0.002 0.006

(0.007) (0.007) (0.007) (0.007)
income −0.002 −0.002 −0.002 −0.002

(0.003) (0.003) (0.003) (0.003)
secondary education 0.072∗∗∗ 0.068∗∗∗ 0.078∗∗∗ 0.071∗∗∗

(0.012) (0.012) (0.012) (0.012)
use phone 0.004 0.002 0.004 0.002

(0.005) (0.005) (0.005) (0.005)
leader −0.008 −0.006 −0.007 −0.008

(0.012) (0.012) (0.013) (0.012)
political participation 0.025∗∗∗ 0.025∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.008) (0.008) (0.008) (0.008)
meeting attendance 0.174∗∗∗ 0.159∗∗∗ 0.183∗∗∗ 0.171∗∗∗

(0.026) (0.026) (0.027) (0.026)
pro-sociality −0.061∗∗∗ −0.061∗∗∗ −0.063∗∗∗ −0.067∗∗∗

(0.018) (0.017) (0.018) (0.017)
geography −0.118∗∗∗ −0.123∗∗∗ −0.103∗∗∗ −0.114∗∗∗

(0.023) (0.022) (0.023) (0.022)
Constant 0.008 0.439∗∗∗ 0.467∗∗∗ −0.008 0.379∗∗∗ 0.414∗∗∗

(0.018) (0.087) (0.083) (0.017) (0.087) (0.084)
Observations 3,154 2,991 2,991 3,154 2,991 2,991
R2 0.141 0.248 0.274 0.117 0.232 0.250

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Main specifications, village A excluded. This table reproduces Table ?? in the main text but excludes village A from the sample.
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4.2 Two-stage selection model

We probe into the mechanism underlying neighbors’ influence. Do neighbors foster adoption by

spreading news about the existence of the technology, or by pushing individuals who already

know of the innovation to adopt it? We answer this question by estimating a type-2 Tobit

model for binary outcomes (Cameron and Trivedi, 2005). This selection model separates the

fact of having heard about the platform from the decision to adopt it. Our outcomes are:

y1i =
{

1, if i hears about the platform
0, otherwise

y2i =


1, if i adopts the platform and y1i = 1
0, if i does not adopt the platform and y1i = 1
_, if y1i = 0

That is, deciding whether to adopt the platform (y2i) is defined if and only if one heard about it

(y1i = 1). Let x1i and x2i be column vectors of individual-level predictors for hearing about the

platform and adopting it, respectively. We consider the following binary type-2 Tobit model:

p(y2i|x1i,x2i)︸ ︷︷ ︸
adopting

= p(y2i|x2i,y1i)︸ ︷︷ ︸
adopting conditional on hearing

p(y1i|x1i)︸ ︷︷ ︸
hearing

(1)

We estimate the model using logistic regression, and account for village-level effects by adding

village indicators. This model can easily be estimated using two logistic regressions: the first

regresses y1 onX1 for the whole sample, and the second regresses y2 onX2 for those observations

where y1i = 1. In the first stage, we regress hearing about the technology on the number of

hearing neighbors. In the second stage, we regress adopting the technology on the number of

adopting neighbors. We use the same set of controls as in the main text, with the exception

that we exclude meeting attendance from the first stage, because it perfectly predicts hearing

about the platform. We also estimate a reduced-form specification identical to our baseline

specification using logistic regression (Table ??, model 2) to compare effect sizes in the second

stage to a corresponding reduced-form specification.

Table 6 reports the results. Neighbors influence both hearing about the technology and

adopting it. Controls reveal an additional interesting pattern: if females are less likely to adopt,

it is only because they are less likely to hear about the technology, not because they are less

likely to adopt it, conditional on having heard about it.
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Dependent variable:
heard adopt

First stage Second stage Reduced form
(1) (2) (3)

# adopting neighbors 0.339∗∗∗ 0.364∗∗∗

(0.096) (0.091)
# hearing neighbors 0.150∗∗∗

(0.021)
degree −0.001 0.005 0.008

(0.008) (0.008) (0.008)
age −0.014∗∗∗ −0.027∗∗ −0.030∗∗∗

(0.003) (0.012) (0.011)
female −0.323∗∗∗ −0.041 −0.211

(0.098) (0.303) (0.289)
income 0.027 −0.084 −0.064

(0.039) (0.113) (0.106)
secondary education 0.611∗∗∗ 1.386∗∗∗ 1.616∗∗∗

(0.112) (0.281) (0.282)
use phone 0.548∗∗∗ 1.296∗∗ 1.617∗∗∗

(0.111) (0.530) (0.536)
leader 0.190 −0.186 −0.110

(0.138) (0.348) (0.361)
political participation 0.527∗∗∗ 0.733∗∗∗ 0.841∗∗∗

(0.092) (0.217) (0.205)
meeting attendance 1.112∗∗∗ 1.966∗∗∗

(0.263) (0.266)
pro-sociality −0.240 −1.060 −1.271∗

(0.237) (0.691) (0.663)
geography 0.097 −2.580∗∗∗ −2.084∗∗∗

(0.208) (0.636) (0.544)
Constant −1.518∗∗∗ −1.829 −3.834∗∗∗

(0.547) (1.373) (1.292)
Observations 3,019 938 3,019
Akaike Inf. Crit. 3,000.939 570.499 664.305

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: Two-stage selection model. Logistic regression estimates with village-level fixed effects.
Coefficients are log-odds ratios. Heteroskedastic robust standard errors in parentheses. Model (1) reports
the first stage (hearing about the platform), model (2) reports the second stage (adopting the platform
conditional on hearing), and model (3) reports the corresponding reduced-form model.
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4.3 Instrumental variable

As discussed in the main text, initial encouragements to adopt the technology might be en-

dogenous. Patterns of social influence may be confounded by other effects: two peers may

adopt the technology due to similar unobservable characteristics, or because they have been

exposed to related unobservable shocks. We address this issue using a generalization of An

(2016) instrumental variable (IV) approach. Consider the following linear model of adoption:

y =Xβ+λMy+ ε (2)

with y a vector of outcomes of length N , with yi = 1 if i adopts the platform, and 0 otherwise,

X an N ×K matrix of individual covariates, M an N ×N adjacency matrix, with diagonal

entries set to 0, and ε an error term. Formally, the problem is that the autoregressive term My

is quite possibly correlated with the error term ε.

To address the issue of endogeneity, An (2016) recommends using an instrument z that is

correlated with y, but not with ε. Using the two stages least squares (2SLS) procedure, we

estimate the following models with OLS:

y =Xβ0 +λ0z+ ε0

y =Xβ+λz+γMŷ+ ε,

with ŷ =Xβ̂0 + λ̂0z.1

Our instrument is the distance from one’s household to the location of the venue that GAPP

used to hold its U-Bridge inception meeting. The idea is that the shorter the distance to the

meeting venue, the more likely a villager is to adopt U-Bridge, simply by increasing the likelihood

that she attends the meeting and learns about the new political communication technology. For

the instrument to be valid, the exclusion restriction must be satisfied; i.e., we must assume

that j’s distance to the location of GAPP’s inception meeting does not affect i’s adoption

via alternative channels than j’s influence on i. This would be the case if contacts tended

to cluster around locations that were more or less exposed to the meeting. Encouragingly,

we find little (.15) correlation between physical distance and having a social tie. We also

conduct several placebo tests to further explore potential violations of the exclusion restriction

by conducting several placebo tests. If the exclusion restriction holds, mean peer distance from
1Let θ̂2SLS = (β̂, λ̂, γ̂), H = (X,z,Wy), and Ĥ = (X,z,W ŷ). The variance covariance matrix writes V(θ̂2SLS) =

σ̂2(ĤᵀH)−1 with σ̂2 = eᵀe/N and e= y−Hθ̂2SLS .
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the meeting should affect one’s adoption decision, but should not affect other theoretically

meaningful predictors of adoption, such as political participation, leadership status, or phone

ownership. Table 9 shows that this is indeed the case.

Note, furthermore, that our IV specification matches imperfectly our main specification

(main text, Table ??). In particular, we omit our geographic control and meeting attendance.

Indeed, because the instrument is the random choice of a meeting location, these controls are

post-treatment covariates in this approach, and should therefore be excluded from the model.

The results of our IV models, reported in Table 7, confirms our basic adoption model. Again,

results suggest a better model for for absolute threshold model (column 1) as compared to the

fractional model (column 2). F-tests suggest, however, that our instrument is rather weak, with

F statistics below 10. Note, furthermore, that our IV estimates are larger than comparable OLS

estimates. We believe that using distance to the meeting as an instrument magnifies the effect

of meeting attendance, because it compounds the effect of all neighbors attending the meeting,

which is a very important predictor of adoption. Furthermore, given that our instrument is

weak, results should be interpreted with care.
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Dependent variable: adopt
Parsimonious IV IV OLS Parsimonious IV IV OLS

(1) (2) (3) (4) (5) (6)
# adopting neighbors 0.043∗∗∗ 0.045∗∗∗ 0.029∗∗∗

(0.014) (0.013) (0.006)
% adopting neighbors 0.107 0.106 0.149∗∗∗

(0.072) (0.070) (0.047)
degree 0.002∗∗ 0.001 0.002∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
distance to meeting (km) −0.004 −0.008∗∗ −0.007∗ −0.005 −0.010∗∗ −0.009∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
age −0.001∗∗∗ −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
female −0.003 −0.007 −0.012 −0.012

(0.008) (0.008) (0.008) (0.008)
income −0.001 −0.001 −0.001 −0.0005

(0.003) (0.003) (0.003) (0.003)
secondary education 0.094∗∗∗ 0.092∗∗∗ 0.103∗∗∗ 0.100∗∗∗

(0.014) (0.014) (0.014) (0.014)
use phone 0.004 0.005 0.007 0.006

(0.005) (0.005) (0.005) (0.005)
leader −0.001 −0.003 −0.002 −0.002

(0.013) (0.013) (0.013) (0.013)
political participation 0.030∗∗∗ 0.029∗∗∗ 0.033∗∗∗ 0.032∗∗∗

(0.009) (0.009) (0.009) (0.009)
pro-sociality −0.050∗∗ −0.047∗∗ −0.050∗∗ −0.050∗∗

(0.020) (0.020) (0.020) (0.020)
Constant 0.104 0.066 0.083 0.145∗ 0.106 0.092

(0.084) (0.084) (0.085) (0.085) (0.085) (0.086)
F statistic 1.28 5.92∗∗ _ 1.28 5.92∗∗ _
Observations 2,832 2,832 2,832 2,832 2,832 2,832
R2 0.103 0.174 0.182 0.092 0.160 0.164

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Instrumental variable estimates. 2SLS estimates with village-level fixed effects (models 1,
2, 4, 5), and corresponding OLS estimates (models 3, 6). We report F-statistics for instrument strength.
Although the instrument is weak, there is evidence of peer effects.
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Dependent variable: adopt
Parsimonious IV IV

(1) (2)
distance to meeting (km) −0.005 −0.011∗∗

(0.004) (0.004)
degree 0.004∗∗∗ 0.003∗∗∗

(0.001) (0.001)
age −0.001∗∗∗

(0.0002)
female −0.013∗

(0.008)
income −0.001

(0.003)
secondary education 0.105∗∗∗

(0.014)
use phone 0.007

(0.005)
leader −0.002

(0.013)
political participation 0.034∗∗∗

(0.009)
pro-sociality −0.050∗∗

(0.020)
Constant 0.169∗∗ 0.131

(0.083) (0.082)
Observations 2,832 2,832
R2 0.092 0.160

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Instrumental variable approach, first stage. OLS estimates of first stage of 2SLS
models in table 7 with village-level fixed effects. The instrument is weak.

Dependent variable:
adopt pol. participation leader phone
(1) (2) (3) (4)

mean peer distance to meeting (km) −0.021∗∗∗ −0.015 −0.007 0.009
(0.008) (0.026) (0.013) (0.021)

age 0.0001 0.004∗∗∗ 0.006∗∗∗ −0.004∗∗∗

(0.0002) (0.001) (0.0005) (0.001)
female −0.041∗∗∗ −0.231∗∗∗ −0.094∗∗∗ −0.132∗∗∗

(0.008) (0.022) (0.013) (0.018)
income 0.003 0.046∗∗∗ 0.016∗∗∗ 0.045∗∗∗

(0.003) (0.009) (0.005) (0.007)
secondary education 0.122∗∗∗ 0.174∗∗∗ 0.002 0.270∗∗∗

(0.015) (0.028) (0.017) (0.018)
pro-sociality −0.058∗∗∗ 0.042 −0.016 0.032

(0.021) (0.058) (0.032) (0.043)
Constant 0.154∗ −0.014 −0.089 0.784∗∗∗

(0.082) (0.134) (0.067) (0.068)
Observations 2,832 2,832 2,832 2,832
R2 0.105 0.123 0.099 0.167

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: Placebo tests for IV. OLS estimates with village-level fixed effects. Heteroskedastic
standard errors in parentheses. Mean peer distance to meeting location affects adoption (model
1), but does not affect political participation (model 2), being a leader (model 3), or using a
phone (model 4).
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4.4 Degree and other network characteristics

As Aronow and Samii (n.d.) argue, exposure to peer influence is endogenous to one’s network

position. If the technology diffuses through patterns of social influence, then individuals with

more central network positions are more likely to be exposed to such influence. In the limit,

agents with no neighbors cannot be exposed to any influence, while agents with many neighbors

are subjected to much influence.

To address this issue, we compare between individuals with similar network positions. Yet,

network positions can only be described partially, using centrality scores that each capture

different aspects of one’s network position.

We reestimate our baseline specification but control very flexibly for one major centrality

score: degree centrality. Table 10 reports the results from two specifications. One uses degree

strata that split the population into degree deciles. The second controls from degree non-

parametrically using generalized additive modelling, with thin-plate splines. Peer influence is

robust to such controls.

Second, we reestimate our baseline by controlling for a host of standard centrality scores:

degree, betweenness, closeness, eigenvector, Bonacich centralities, and clustering. Eigenvector

and Bonacich centralities are recursive metrics where a node is more central to the extent that

it is connected to more central node. Other concepts are defined in section 1 of this SI. We

estimate one model per centrality score, and divide the population in three strata based on

which tercile they belong to. Again, peer influence is robust to such controls.
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Dependent variable: adopt
OLS GAM

(continuous)
degree strata GAM

(1) (2)
# adopting neighbors 0.029∗∗∗ 0.027∗∗∗

(0.005) (0.003)
degre ∈ [8,9] −0.001

(0.010)
degree = 10 −0.006

(0.011)
degre ∈ [11,12] −0.017∗

(0.009)
degree = 13 −0.021∗∗

(0.010)
degre ∈ [14,15] −0.013

(0.011)
degre ∈ [16,17] −0.022∗∗

(0.011)
degre ∈ [18,20] −0.001

(0.014)
degre ∈ [21,25] −0.006

(0.015)
degree > 25 0.049∗∗

(0.022)
age −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0002)
female 0.008 0.008

(0.007) (0.007)
income −0.002 −0.002

(0.003) (0.003)
secondary education 0.072∗∗∗ 0.073∗∗∗

(0.012) (0.009)
use phone 0.003 0.002

(0.005) (0.007)
leader −0.007 −0.008

(0.013) (0.010)
political participation 0.028∗∗∗ 0.027∗∗∗

(0.008) (0.006)
meeting attendance 0.178∗∗∗ 0.177∗∗∗

(0.026) (0.013)
pro-sociality −0.057∗∗∗ −0.058∗∗∗

(0.018) (0.017)
geography −0.120∗∗∗ −0.113∗∗∗

(0.023) (0.015)
Constant 0.140∗ 0.138∗∗∗

(0.076) (0.041)
Observations 3,019 3,019
R2 0.250

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Flexible controls for degree. OLS estimates with village-level fixed effects. Het-
eroskedastic standard errors in parentheses. Model 1 controls for degree using degree strata
based on sample deciles. Degree < 8 is the reference category. Model 2 uses a generalized
additive model, and controls for degree using thin-plate regression splines. Peer influence is
robust to such controls.
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Dependent variable: adopt
Degree Betweenness Closeness Eigenvector Bonacich Clustering
(1) (2) (3) (4) (5) (6)

# adopting neighbors 0.032∗∗∗ 0.033∗∗∗ 0.034∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗

(0.005) (0.005) (0.006) (0.005) (0.005) (0.005)
medium degree −0.013∗

(0.007)
high degree 0.005

(0.009)
medium betweenness −0.017∗∗

(0.007)
high betweenness −0.003

(0.009)
medium closeness −0.003

(0.007)
high closeness −0.015

(0.010)
medium eigenvector −0.002

(0.007)
high eigenvector 0.011

(0.009)
medium bonacich 0.006

(0.008)
high bonacich 0.001

(0.008)
medium clustering −0.021∗∗

(0.009)
high clustering −0.014∗

(0.008)
Constant 0.127∗ 0.126∗ 0.131∗ 0.117 0.121 0.141∗

(0.076) (0.076) (0.076) (0.076) (0.077) (0.077)
Observations 3,019 3,019 3,019 3,019 3,019 3,019
R2 0.244 0.244 0.244 0.244 0.243 0.245

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: Network covariates. OLS estimates with village-level fixed effects. Heteroskedastic stan-
dard errors in parentheses. Network controls use tercile strata, with the lowest tercile as the reference
category. Peer effects are robust to these network controls. Consistently with simple contagion, low
clustering individuals adopt more. Controls not shown.
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4.5 Matching

Following Aral, Muchnik and Sundararajan (2009), we use matching to address simultaneously

the problems of endogenous initial encouragements to adopt the technology, and endogenous

exposure to peer influence due to network position. Our matched sample matches both on indi-

vidual and network characteristics. We selected individual characteristics that are substantially

and theoretically meaningful predictors of uptake: phone ownership, secondary education, po-

litical participation, and meeting attendance. Our network characteristics are degree and eigen-

vector centrality. Matching alleviates bias by constructing a treatment and a control group that

more are comparable on such observable characteristics. It has the additional benefit of con-

structing groups that are also presumably more comparable on other network characteristics,

since centrality scores tend to be highly correlated.

Matching requires using a binary treatment. As in Aral, Muchnik and Sundararajan (2009),

we make our treatment binary by defining cutoffs in the number of adopting neighbors above

which we consider that an observation is treated. Specifically, we use cutoffs of one, two, and

three neighbors. Having defined these cutoffs, we compared, for each cutoff, three different

matching procedures: neighbor, coarsened exact, and full matching. We chose full matching

because it is the procedure that achieved the highest distance reduction for all three cutoffs.

Figure 2 shows the results of our matching procedure for a cutoff of one neighbor. Our

matched sample is balanced on degree, eigenvector centrality, and political participation. It is

not balanced on the other characteristics.

We then reestimate our baseline specification on each matched sample. Table 12 shows that

our results are largely robust to using a matched sample. The magnitude of the treatment effect

increases with the strength of the treatment. While having at least one adopting neighbor does

not significantly foster adoption, having at least two, and at least three adopting neighbors

significantly fosters adoption.
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Dependent variable: adopt
Matched sample, t= 1 Matched sample, t= 2 Matched sample, t= 3

(1) (2) (3)
# adopting neighbors ≥ t 0.027∗ 0.054∗∗∗ 0.091∗∗∗

(0.017) (0.017) (0.026)
degree 0.003∗∗∗ 0.004∗∗ 0.002

(0.001) (0.002) (0.002)
age −0.001∗∗∗ −0.001∗∗ −0.002∗

(0.0003) (0.001) (0.001)
female −0.004 0.003 0.002

(0.008) (0.013) (0.018)
income −0.005 −0.008 −0.015

(0.003) (0.008) (0.010)
secondary education 0.081∗∗∗ 0.091∗∗∗ 0.093∗∗∗

(0.014) (0.026) (0.031)
use phone 0.005 0.009 0.019

(0.006) (0.011) (0.016)
leader −0.010 −0.022 −0.030

(0.018) (0.041) (0.041)
political participation 0.026∗∗ 0.032 0.047∗∗

(0.010) (0.024) (0.021)
meeting attendance 0.179∗∗∗ 0.208∗∗∗ 0.163∗∗∗

(0.029) (0.054) (0.045)
pro-sociality −0.084∗∗∗ −0.090∗∗ −0.121∗∗

(0.024) (0.043) (0.061)
geography −0.114∗∗∗ −0.156∗∗∗ −0.241∗∗∗

(0.028) (0.045) (0.065)
Constant 0.277 0.187 0.498∗∗∗

(0.170) (0.123) (0.190)
Observations 3,019 3,019 3,019
R2 0.231 0.306 0.221

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12: Matching estimates. OLS estimates with village-level fixed effects on a matched sample using full matching (see figure 2 for details
on matching procedure). Heteroskedastic standard errors in parentheses. Additional robustness checks. Standard errors in parentheses. Treatment
is an indicator variable that equals 1 if i has at least t adopting adopting neighbors. Peer influence is robust to using a matched sample.
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Figure 2: Covariate balance on dimensions used for matching, t = 1. We report the
p-value of the difference in means in the treatment and control group in the full and matched
sample, using full matching. Matching achieves balance in degree, eigenvector centrality, and
political participation. It does not achieve balance in the remaining dimensions.

5 Heterogeneous effects by village

Figure 3 shows scatter plots of the data used to construct figure ?? in the main text.
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Figure 3: Determinants of village-level peer effect. Scatter plots of selected scaled village-
level characteristics and village level peer effect. We report the linear trend line (red) and a
loess fit (blue).

6 Lab-in-the-field games

Upon conclusion of the survey, each respondent was given 2,000 Ugandan Shillings (about 60

cents in US dollars), half of which was used for a dictator game, and half of which was used in a

public goods game. While 60 cents may seem like a trivial amount of money, it is a meaningful

about to respondents in this context, where GDP per capita is just over US$600, and where
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the district in question is among the poorest regions in the country, according to recent poverty

estimates.

In the dictator game the respondent decides how to divide the money between herself and

another player. In practice, this second player was an anonymous individual who resided in the

same district, but not in the same village. The respondent keeps whatever she has decided to

allocate to herself, and the remainder stays with the enumerator who then gives it to the second

player. Both players are anonymous; the respondent does not know the name of the recipient

and the recipient does not know the name of the respondent.

In the public goods game, respondents were asked to divide Ushs1000 between private and

public accounts. The share of respondents’ initial endowment that they placed in the private

account remained theirs and what they donated to the public account was doubled by the

research team and delivered to local leaders to invest in a community project. By construction,

the most profitable outcome for the community occurs when all members contribute their entire

endowment to the village project. However, the most profitable strategy for each individual is

to keep the entire endowment and benefit from what everyone else contributes to the public

account.

Herein, we average across experimental conditions, analyzing the effect of treatment assign-

ment on contribution levels in a companion paper.
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